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Abstract 

Basal cell carcinoma (BCC), a keratinocyte cancer, is the most common human neoplasm 

worldwide. Although rarely metastatic, BCC is associated with high morbidity rates with 

globally rising incidence rates. Accompanying the increase in newly diagnosed cases, the 

societal cost for BCC treatment in Canada is also expected to inflate, exceeding over $900 

million/year by 2031. Chronic UVB exposure has been identified as the primary carcinogen 

that causes activating mutations in the hedgehog signaling pathway. However, there are no 

effective preventative methods against BCC, since meta-analyses report sunscreen 

application does not reduce BCC in compliant patients. The native high molecular-weight 

hyaluronan (HMW-HA) was recently reported to confer tumor resistance to carcinogens 

including UVB in naked mole-rats (Heterocephalus glaber). We therefore prepared 

phosphatidylethanolamine-linked HMW-HA polymers (HA-PE) for topical application in 

UVB-induced, BCC susceptible Ptch+/LacZ/Hr-/- mice. HA-PE formed detectable HA coats 

around epidermal and hair follicle keratinocytes, and prevented histologically-detectable 

keratinocyte tumor formation, verified by reduced Ptch1 promoter activity indicating 

oncogenic hedgehog pathway shutdown. Further evidence of signaling inactivation by HA-

PE includes strong suppression of the expression of hedgehog pathway gene targets in both 

the epidermis and hair follicles. Surprisingly, HA-PE did not prevent UVB/ROS-induced 

DNA damage. However, HA-PE promoted quiescence in the hair follicle bulge and 

selective apoptosis of K15+ stem cells that are BCC initiating in the Ptch1+/LacZ/Hr-/- 

susceptibility model.  Consistent with this finding, the K15+ stem cells population 

decreased from hair follicles between 4-26 weeks of treatment. These results provide 

evidence of a novel mechanism for HA-mediated tumor resistance and implicate HA-PE 

as a promising BCC prophylactic. This knowledge will also provide a model for probing 

the interplay between the microenvironment and oncogenic mutations that permit or 

restrain tumor initiation.  

Keywords 
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Chapter 1  

1 Introduction 

1.1 Basal cell carcinoma 

Basal cell carcinoma (BCCs) are locally aggressive keratinocyte tumors with a recurrence 

rate of 50% in 5 years following diagnosis. BCC is the most common form of neoplasm in 

adults 1,2,3, accounting for 70% of all keratinocyte tumors and 90% of all malignant skin 

diseases. Chronic exposure to ultraviolet (UV) radiation has been identified as the primary 

risk factor for BCC 4. Historically, BCC occurs more frequently in fair-skinned populations 

and in males due to increased sun-exposure in workplaces5–9. However, this regional and 

sex difference is decreasing due to steady depletion of the protective ozone layer and 

enhanced UV exposure in all populations 10–12. Although BCC was originally considered 

as a malignancy of the older population (>65 years of age), epidemiological studies report 

a dramatic increase in BCC incidence in younger populations during the last decade due to 

tanning bed usage 5–7,12–14. BCC rarely metastasizes, but is locally aggressive and causes 

dermal tissue destruction, thus resulting in high morbidity rates 15. Moreover, a history of 

non-melanoma skin cancer is associated with increased risk of developing secondary 

tumors prone to metastasis, such as breast, prostate and colon cancers16-18. Currently, 

societal cost for BCC treatment and related expenses in Canada is approximately $34.6 

million (www.iwh.on.ca) and is expected to exceed over $900 million by 2031 (Canadian 

Partnership Against Cancer, 2010).  

Common treatments of BCC include non-specific surgical removal of tumors, application 

of oncogenic pathway inhibitors, and radiotherapy 19,20. However, surgical excisions often 

contribute to patient morbidity as they are visibly scarring, while inhibitor treatment is 

associated with increased risk of developing secondary low-grade keratinocyte tumors20,21. 

Moreover, multiple tumor recurrences are common following surgical excisions and 

targeted therapy (up to 7% within 5 years)22–24, contributing to the accumulation of 

healthcare cost and deterioration of quality of life. In addition, radiotherapy is commonly 

http://www.iwh.on.ca)/
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recommended as a palliative treatment in elderly patients 25, and is associated with higher 

cost and recurrence (85% within 3 years) 26,27.   

1.1.1 Molecular mechanisms of BCC tumorigenesis  

Advancement in the past decade has identified aberrant activation of the sonic hedgehog 

signaling as the primary cause of BCC pathogenesis 28,29,30-32. Hedgehog signaling plays a 

pivotal role in embryogenesis through orchestrating cell-cell communication of the 

epidermis and neural patterning31. During morphogenesis, sonic hedgehog signaling 

promotes proliferation, differentiation, and vascularization33, all of which are employed by 

tumor cells for growth and metastasis. In post-natal skin, hedgehog signaling promotes 

active growth of hair (anagen) and is required for hair follicle-resident multipotent stem 

cell proliferation29,34. The pathway is activated when the extracellular ligand sonic 

hedgehog (SHH) binds and inhibits the transmembrane receptor Patched1 (PTCH1), 

triggering rapid endocytosis of the PTCH-SHH complex33,35. The internalization of PTCH1 

releases its suppression of Smoothened (SMO), cumulating in the activation and nuclear 

translocation of the GLI family of transcriptional factors (Figure 1). Specifically, GLI2 and 

GLI3 accumulate in the nucleus and induce target gene expression in the presence of SHH. 

In contrast, GLI1 expression can only be induced by activated GLI2/3 and is dependent on 

active sonic hedgehog signaling. Thus, GLI1 is a reliable molecular marker of hedgehog 

activation, and its overexpression is characteristic of sporadic BCC29. Other target genes 

of the sonic hedgehog pathway include Ptch1, a negative regulator that dampens the signal 

transduction of this pathway, and various regulators of cell cycle and apoptosis, such as 

Bcl-2 and Ccnd1/2. 29,36. Since PTCH1 and GLI1 are both regulators and target genes of 

hedgehog signaling, they are often used as markers to examine hedgehog signaling 

activation37–39.  
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Figure 1: Sonic hedgehog signaling pathway. When the sonic hedgehog ligand (SHH) is 

absent, the pathway is inactivated. Tumor-suppressor Patched 1 (PTCH1) inhibits 

downstream Smoothened (SMO). However, PTCH1 is inactivated with SHH binding, 

allowing SMO to activate the transcriptional factor family GLI to induce target gene 

expression. GLI1 expression relies on GLI2/3 activation, therefore its expression level is 

often used as an indicator of the overall signaling activity in the sonic hedgehog pathway.  
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Pathogenic activation of the sonic hedgehog pathway can occur through sustaining 

inactivation mutations in Ptch1, thus abolishing its inhibition of SMO. Genetic studies 

report over 90% of sporadic BCC patients sustain Ptch1 mutations, marking Ptch1 as the 

most commonly disrupted gene underlying BCC tumorigenesis40,4142. Ptch1 in BCC 

patients also contain a high level of UV-signature mutations, suggesting chronic exposure 

to environmental UV as the primary risk factor in sporadic BCC43. Mutations in other genes 

of the pathway can also lead to BCC pathogenesis and additional neoplasms. For instance, 

ligand-independent activating mutations in Smo have been found in 6-21% of sporadic 

BCCs 29,42, while Gli2 overexpression induces BCC tumorigenesis in UVB-exposed 

murine models44.  

In addition, sonic hedgehog signaling is reported to regulate stem cell lineage maintenance 

and cancer stem cell renewal in vivo 45,46. Overexpression of SHH in post-natal mice 

resulted in increased stem cells and atypical proliferation, whereas blockage abolished this 

effect46,47. Clinical and molecular evidence suggest BCC carcinogenesis is preceded by 

inappropriate hyperactivation of the hedgehog pathway, which normally regulates stem 

cell renewal, proliferation, and appropriate hair follicle cycling in post-natal 

epidermis33,46,48. Since BCC is a malignancy that originates from epidermal and hair follicle 

stem cells, investigating sonic hedgehog signaling in the epidermal stem cell niche is 

pivotal to understanding BCC pathogenesis.  

1.2 Pathophysiology of BCC 

1.2.1 Anatomy of skin 

In human, the skin is divided into three layers: the epidermis, dermis, and hypodermis. The 

epidermis is further separated into distinct layers based on keratinocyte differentiation. The 

basal layer (stratum basale) contains progenitor cells that rapidly proliferate, giving rise to 

differentiated keratinocytes in the suprabasal layers (stratum corneum, stratum lucidum, 

stratum granulosom, and stratum spinolosum)33. New daughter keratinocytes continuously 

migrate upward, which is terminated at the stratum corneum where matured keratinocytes 

keratinize and undergo apoptosis (Figure 2).  
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Similar to the human integument system, murine epidermis and related appendages are 

renewed independently from distinct niches of adult stem cells49,50. Rapid turnover of the 

interfollicular epidermis (IFE) is maintained by epidermal stem cells in stratum basale 

through mitotic division. In contrast, multipotent cytokeratin-15-expressing (K15)  adult 

stem cells residing in the bulge region and outer root sheath (ORS) of hair follicles are 

responsible for the renewal of the follicles and associated glands51,52. These bulge stem 

cells (BuSCs) are slow-cycling and are quiescent until activated by sonic hedgehog 

signaling29,34,53,54. Daughter cells from BuSC give rise to transiently-amplifying progenitor 

cells, which then rapidly divide symmetrically to renew multiple compartments of the hair 

follicle, such as the inner root sheath (IRS) and hair shaft (Figure 2). Transiently-

amplifying cells in the hair matrix are defined by their more limited plasticity and 

proliferative properties than BuSCs 48. Deprivation of sonic hedgehog signaling results in 

BuSC quiescence and interferes with appropriate progression through hair cycle, since 

BuSCs proliferation is essential for anagen 55,56.  As observed after administration of 

hedgehog inhibitors such as vismodegib and sonidegib, loss of sonic hedgehog signals 

prevents BuSC proliferation and telogen-to-anagen transition, resulting in alopecia of 

human patients57. Interestingly, neural-derived sonic hedgehog signal also triggers 

transient participation of BuSCs in wound healing by stimulating their migration upward 

into the epidermis, where they differentiate into multipotent progenitor cells to renew the 

IFE 49,54.  

  



www.manaraa.com

6 

 

 

Figure 2: Anatomy of the human skin.  A. Hair follicle structure in human. Multipotent 

adult stem cells reside within the bulge (green), which is a specialized portion of the outer 

root sheath (light orange). Upon stimulation by sonic hedgehog signaling, adult stem cells 

proliferate and daughter cells constitute the outer root sheath, eventually differentiating 

into transiently-amplifying cells residing within the hair matrix (light green), which flanks 

the dermal papillae (yellow). These multipotent progenitors then give rise to the hair shaft 

(grey) and the inner root sheath (blue). B. Layers of the epidermis. Interfollicular epidermis 

renewal depends on the mitotic division of progenitor cells in stratum basale, with newly 

differentiated keratinocytes in the suprabasal layers (stratum spinosum, granulosum, 

lucidum, and corneum).  The figure is adapted from Blue Histology, University of Western 

Australia (http://www.lab.anhb.uwa.edu.au/mb140/).   

  

http://www.lab.anhb.uwa.edu.au/mb140/)
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1.2.2 Cancer-initiating cells in BCC 

Previous in vivo studies report BCC commonly arise from SCs residing within the hair 

follicles and the IFE. Aberrant activation of sonic hedgehog signaling causes SCs to enter 

a hyperproliferative state and result in neoplastic outgrowths58–61, whereas its inhibition 

reduces tumor growth in susceptible mouse models and humans. However, the plasticity 

of epithelial SCs adds an additional layer of complexity to the cell origin and epidermal 

compartment of BCC initiation. For example, constitutive sonic hedgehog activation 

driven by Ptch1 loss produces micronodular BCCs arising from the bulge and ORS regions 

in hair follicles. Cell fate tracking of IR-induced BCCs in Ptch+/- mice demonstrate these 

keratinocyte tumors originate exclusively from the K15+ BuSCs 58,60,62, or from their 

progeny in follicles44. In contrast, hedgehog dysregulation resulting from overexpression 

of downstream components, such as mutant SMO (SmoM2) and GLI2 (GLI2△N), result 

in BCC tumors arising from the IFE 59,61. The multipotent K14-expressing adult stem cells 

in stratum basale give rise to BCCs associated with the epidermis. The consensus in the 

field for this discrepancy is that the loss of tumor-inhibitor PTCH1 and the overexpression 

of mutant SMO may produce different biological effects 58,59. The surprising resistance 

against SMO/GLI2-driven tumorigenesis in follicles also suggests the stem cell niche may 

act as a key regulator of the tumorigenic potential of BuSCs in BCC initiation 58,59.  

Clinical and genetic studies conclude Ptch1 inactivation is the most prominent oncogenic 

driver mutation in nodular and micronodular BCC, which are the most prevalent and high-

risk histopathological subtype in sporadic BCC patients respectively63,64. These tumors are 

characterized by cell nests encircled by scant stroma that is prominently separated from the 

surrounding tissue 63–65, consistent with tumors arising from the hair follicles due to Ptch1 

loss. In contrast, superficial BCC originates from the IFE in human patients64, consistent 

with tumors driven by mutant SMO and GLI2 overexpression in murine models59,61. Since 

over 90% of sporadic BCC patients contain Ptch1 inactivating mutation40,43,66, focus has 

been placed on the role of PTCH1 inactivation and downstream consequences in the 

context of BCC initiation.  
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1.2.3  UV radiation and DNA damage  

Neoplastic formation induced by chronic UV exposure is widely accepted as the 

predominant paradigm in skin carcinogenesis 67–71. A strong causal link exists between 

prolonged UV radiation and BCC, as epidemiological and molecular studies report 

approximately 90% of non-melanoma skin cancer are associated with UV exposure 8,43, 72. 

UV radiation can introduce inactivating mutations in tumor-suppressors and 

inappropriately activate oncogenes, resulting in aberrant proliferation and evasion of 

apoptosis in keratinocytes sustaining these mutations. UVB (290 - 320nm) is the most 

carcinogenic UV radiation67,69. Prolonged UVB exposure results in direct DNA damages 

in the form of cyclobutane pyrimidine dimers (CPD), and is associated with the 

accumulation of double-stranded breaks (DSBs) in keratinocytes due to the collapse of 

replication forks67,69. The bulky photodimers interfere with the spatial structure of DNA 

and proper replication, whereas DSBs possess greater risks of losing of genetic materials 

if not repaired effectively. Moreover, evidence suggests chronic UVB exposure augments 

skin carcinogenesis through altering immune cell function in the tumor microenvironment, 

thus promoting sustained inflammatory response and evasion of immune surveillance69,73–

75. Constant production of reactive oxygen species (ROS) by recruited immune cells further 

contributes to neoplastic initiation in a re-modeled microenvironment76. Since the 

epidermis is constantly exposed to environmental UVB, adult stem cells in the stratum 

basale and hair follicles pose as vulnerable targets to damage and carcinogenesis. 

Next-generation deep sequencing (NGS) demonstrates that BCC contains a high 

mutational load compared to metastatic cancer types, such as breast, lung, and ovarian 

cancers77–79. Interestingly, this high mutational load does not always affect keratinocyte 

tumor initiation, which is defined as the irreversible process of a normal cell in acquiring 

the capacity for tumor formation, commonly through oncogenic pathway activation and 

subsequent clonal expansion. NGS analyses detected expanded clonal patches of 

keratinocytes carrying driver mutations in photo-aged skin without histologically-

detectable tumors79–83. These driver mutations, such as mutational inactivation of TP53, in 

UVB-exposed skin occur at a high frequency that is similar to many malignant cancers and 

appear to be under strong positive selection, yet the skin remains physiologically normal. 

Moreover, in vivo studies of human keratinocytes suggest TP53 mutations conferring to 
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increased proliferative capacity are not sufficient to initiate keratinocyte tumors, as they 

were unable to escape the stem cell compartment within the hair follicles to initiate clonal 

expansion84. The central role of DNA damage and related repair mechanisms in skin 

carcinogenesis is undisputed. However, this combination of experimental and genetic 

evidence suggests the existence of an internal barrier, such as tissue architecture or 

microenvironmental signal85–87, that serves as an additional barrier in preventing skin 

tumorigenesis originating from the follicles.  

Currently, there are no effective prophylactics for UVB-induced BCC. Physicians have 

long recommended sun-blocks as the primary preventative method against non-melanoma 

cancer. However, meta-analyses and longitudinal studies report only a slight reduction in 

SCC occurrence, with no significant BCC reduction in compliant patients88-90. Therefore, 

development of preventative measures specific for BCC is imperative. 

1.3 Naked mole-rats in cancer research 

Recent research of cancer-resistant long-lived species yielded potential clues to 

preventative medicine against skin carcinogenesis. Naked mole-rats (Heterocephalus 

glaber) are long-lived rodents (> 30 years in captivity) that display extraordinary longevity 

comparing to mammalian species with similar body mass (i.e: house mouse, 4 years in 

captivity). Aside from their exceptional longevity, naked mole-rats also display surprising 

resistance against carcinogen-induced tumorigenesis91. Only four cases of cancer have 

been reported in these long-lived rodents since captivity, with no reported tumors arising 

from keratinocytes92. Seluanov et al. (2009) have attributed this cancer resistance to the 

hypersensitivity towards contact inhibition (early contact inhibition, ECI). Naked mole-rat 

fibroblasts do not form a confluent monolayer in culture, instead ceasing their proliferative 

activities upon few cell-cell contacts. ECI contributes to cancer resistance by promoting 

cell cycle arrest through inducing p16INK4A expression93.  

The accumulation of epidermal high molecular-weight HA (HMW-HA) has been 

established as the extracellular signal that triggers ECI94. HMW-HA accumulation is 

attributed to two mechanisms in naked mole-rats: enhanced synthesis (enhanced HAS2 

levels) and reduced degradation (low hyaluronidase expression). Importantly, mutant 

fibroblast cell lines lacking the ECI phenotype (p16INK4A-/-) still exhibited continuous 
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production of HMW-HA while wild-type fibroblasts treated with hyaluronidase displayed 

no ECI, therefore placing HA production and signaling upstream of p16INK4A-induced cell 

cycle arrest. Moreover, the ECI response mediated by HMW-HA is transmitted through 

CD44 binding. Upon blocking CD44 with an antibody, naked mole-rat fibroblasts lost ECI 

and reached a higher density in culture. Transformation resistance observed in wild-type 

naked mole-rat fibroblasts was lost upon hyaluronidase and anti-CD44 treatments, 

producing anchorage-independent growth in culture. Decreased expression of p16INK4A is 

also observed in hyaluronidase-treated fibroblasts, implicating that the ECI phenotype is 

modulated by HA/CD44 signaling.  

Recently, HMW-HA accumulation has been reported to induce apoptosis in breast cancer 

cells in 2D culture95. Overexpression of naked mole-rat HAS2 and exogenous HMW-HA 

treatment elevated cytoplasmic cytochrome C expression, caspase activity, ROS 

generation and apoptosis in breast cancer cells. This promotion of apoptosis is associated 

with inhibition of spheroid growth and tumor formation in vivo, along with downregulated 

gene expression involved in proliferation. CD44 expression was significantly upregulated 

in 2D, 3D and in vivo models with the elevation of HMW-HA. Taken together, this suggests 

the interaction between CD44 and large HA polymers mediates cancer cell apoptosis and 

restricts cell cycle progression as a mechanism of cancer resistance in naked mole-rats93–

95.  

1.4 Hyaluronan  

Although the central role of oncogenic driver mutations in carcinogenesis is indispensable, 

mutations alone appear to be insufficient for tumor initiation. Instead, experimental data 

predict the microenvironment can permit or suppress the tumorigenic potential of 

mutations87,96,97. The glycosaminoglycan, hyaluronan (HA), is an example of a 

microenvironmental agent that regulates tumor initiation and progression 98–100. 

Interestingly, HA of different polymer sizes has distinctive biological functions. High 

molecular-weight HA (>500 kDa), such as those observed in naked mole-rats, suppress 

proliferation, migration, and other functions that support tumor growth101,102,. In contrast, 

low molecular-weight HA (<200 kDa; LMW-HA) promote cell proliferation and invasion, 

thus potentiating tumor progression103. HMW-HA also predominates during tissue 
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homeostasis, while LMW-HA accumulates during wound repair and tissue remodeling 

processes100,103,104. Thus, the bio-information of HA is encoded within its polymer size, 

instead of its chemical structure105.  

HA is an anionic, linear, non-sulphated glycosaminoglycan (GAGs) composed of repeating 

disaccharide units of glucuronic acid and N-acetylglucosamine. It facilitates tissue 

hydration via retaining large volumes of water molecules, and participates in regulation of 

tissue homeostasis and biomechanical integrity106,107. HA is ubiquitously present but 

especially abundant in skin, accounting for approximately 50% of the total body HA108. It 

is also present in vitreous of the eye and articular cartilage, where it provides viscoelasticity 

and lubrication106,107. As a crucial component in the microenvironment, HA forms a 

pericellular matrix that is essential for proper ECM assembly and tissue architecture by 

acting as a platform for protein-protein interaction and cell migration106. 

Unlike other GAGs, unmodified HA is synthesized on the interior of the plasma membrane. 

Membrane-associated hyaluronan synthase (HAS) alternatively add UDP-GluUA and 

UDP-GlcNAc substrates to the elongating HA molecule on the inner leaflet of the plasma 

membrane. Elongating HA molecule protrudes through the cell membrane and remain 

attached via a UDP-anchor, forming a peri-cellular coat following post-translational 

modifications. Mammals express three predominate HAS isoforms (HAS1, 2, and 3), 

which are encoded on different chromosomes and exhibit distinct enzymatic properties109–

111. Both HAS1 and HAS2 synthesize large HA polymers (1x106-1x107 Da), while HAS3 

preferentially produce smaller sized HA (1x105 Da).  

HA facilitates complex physiochemical functions despite its simple chemical structure. 

The high molecular-weight native HA polymers (>500 kDa) preferentially produced by 

HAS2 contributes to architectural maintenance and hydration of homeostatic adult 

tissues101,102,111. However, it can be depolymerized enzymatically by hyaluronidases 

(HYAL1-3) into low molecular-weight polymers (<200 kDa) that promote proliferation, 

migration, and inflammation 103. Amongst all hyaluronidases, HYAL2 is often 

overexpressed in the peri-tumor stroma, during damage responses and tissue-remodeling 

processes104. HYAL2 is an extracellular GPI-anchored protein that targets native HA for 

degradation, producing HA fragments of an intermediate size (~20kDa)112,113. The 

resulting HA fragments are then endocytosed and delivered to the lysosome, where 
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HYAL1,3 further process HA into smaller oligomers (<10kDa, hexasaccharides and 

tetrasaccharides). HYAL1, 3 can also be present in the stroma, and are active in a low-pH 

microenvironment to facilitate extracellular HYAL-mediated HA degradation103.  

Under homeostatic conditions, native HA has a rapid turnover rate of under 24 hours in 

skin108. This rapid turnover rate may be required due to the protective functions of HA, as 

it acts as a free radical scavenger under inflammatory conditions114–116. Native HA can also 

be depolymerized by free radicals, such as ROS produced during inflammation and 

exposure to environmental carcinogens (i.e: UV radiation) 117. Excessive degradation by 

ROS and decrease in total skin HA may weaken the protective function of HA, such as 

observed after UVB radiation and in BCC118–120. A homeostatic environment is only 

maintained when the rate of synthesis keeps pace with degradation. When degradation 

exceeds the rate of synthesis, HA fragments accumulate to a significant level, resulting in 

altered microenvironmental signaling121–123. LMW-HA polymers interfere with protein-

protein interactions in the pericellular microenvironment, thus jeopardizing the biomatrix 

integrity124,125. LMW-HA can also outcompete HMW-HA binding with surface receptors 

to alter membrane receptor clustering and downstream intracellular signaling126,127. The 

fragments resulting from native HA degradation are a signal for cellular stress and tissue 

damage. Their presence has been proposed to initiate responses designed to repair tissue 

damage by promoting inflammation and repair. However, cancer cells often upregulate the 

production of LMW-HA in an autocrine/paracrine process that promotes stromal 

remodeling and tumor progression123,128–130.  

1.4.1 HA receptors and signaling  

Native HA and LMW-HA bind to various cell surface receptors, including CD44, Receptor 

for HA-Mediated Motility (RHAMM), Toll-Like Receptors (TLR), and Human 

Hyaluronan Receptor for Endocytosis (HARE)100,131. In keratinocytes, CD44 and 

RHAMM are the two major receptors for surface HA126. CD44 is an integral membrane 

protein that is involved in cell-matrix adhesion, cell-cell adhesion and migration. It 

contains an HA-binding region in the extracellular domain, while its cytoplasmic tail 

regulates intracellular protein signaling126. The common standard form of CD44 contains 

no extra exons, however the insertion of 10 variable exons (exon 6-15) by alternative 
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splicing can generate different isoforms (CD44v1-10) with different physiological 

signaling effects and cellular consequences132. CD44v3-10 predominate in keratinocytes, 

with CD44v3 as the characteristic isoform in homeostatic skin133–135. HA fragments display 

distinct signaling properties comparing to native HA due to their selectivity in receptor-

binding 136,137. Studies report LMW-HA/CD44 binding induces ERK1/2 phosphorylation 

and triggers pro-inflammatory signaling138,139. In contrast, HMW-HA promotes CD44 

clustering at the cell membrane127 but does not trigger ERK1/2 activation136–138. Instead, 

HMW-HA facilitates anti-proliferative and anti-inflammatory responses140, such as 

competitively inhibiting the NFκB signaling induced by LMW-HA/TLR interaction139,141–

144.  

In contrast to CD44, RHAMM is a multi-functional HA receptor that is not highly 

expressed in epidermis under homeostatic conditions. Its expression is typically restricted 

to stratum basale, where the proliferative adult stem cells reside, and sparsely scattered 

throughout the adjacent layer of stratum spinosum in homeostatic epidermis 145. Instead, 

RHAMM overexpression is associated with tumorigenesis and malignant behaviors 146–150, 

specifically in human BCC151. Similar to CD44, RHAMM is capable of interacting with 

both HMW- and LMW-HA, but its protein structure dictates HA fragments with very low 

molecular-weights as its preferred binding partner 126,146. RHAMM often co-complexes 

with other HA-receptors on the plasma membrane, such as CD44 and TLR, to facilitate 

cell migration126.  However, the cellular consequences of RHAMM/HA signaling are 

highly cell-specific and context-dependent. The subcellular compartmentalization of 

RHAMM expression pattern also adds an additional layer of complexity when dissecting 

RHAMM-mediated signaling 126,152. Current literature suggests LMW-HA/RHAMM 

interactions have an instructive role in breast cancer initiation and metastasis148,150,153–155, 

while RHAMM overexpression is found in nodular BCC of patients151. However, the 

precise molecular effects of HA/RHAMM interaction in BCC remains elusive.  

1.4.2 The hyaluronome in carcinogenesis 

HA synthases, hyaluronidases, and HA receptors on the plasma membrane such as CD44 

and RHAMM constitute a complex “hyaluronome”, which regulates HA functions and 
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metabolism. Sustained HA fragmentation is an endogenous danger signal that participates 

in various tissue remodeling processes such as embryogenesis, wound repair, and 

tumorigenesis116,131,156. Specifically, LMW-HA accumulation potentiates the invasive 

tumor phenotype121,156,157 by upregulating hyaluronidase expression and activities. HYAL1 

overexpression correlates with bladder and prostate cancer progression158–161,162, while 

HYAL2 upregulation is associated with malignant cutaneous melanoma and mammary 

gland tumor behavior 163,164. Tumor cells remodel the microenvironment via upregulating 

HAS2, HYAL1 or HYAL2, thus promoting excessive HA synthesis and sustained 

degradation to potentiate invasion and metastasis 165–167. Clinical and experimental studies 

also report elevated LMW-HA polymers promote lymph node metastasis of breast and 

melanoma cells 124,156, while correlating with poor patient prognosis156. Moreover, LMW-

HA is a potent promoter of inflammation, which is a key aspect of the remodeled tumor 

microenvironment. Fragmented HA facilitates macrophage recruitment and differentiation 

into the tumorigenic M2 phenotype via regulating Th1/Th2 cytokine balance, thus 

enhancing local ROS production and further contribute to LMW-HA production168. 

Fragmented HA also induces the phosphorylation and activation of the pro-inflammatory 

NFκB126,142, which is critical in establishing a tumor-permissive microenvironment for skin 

carcinogenesis75.  

In contrast to LMW-HA, native HA restricts cell cycle progression98,127. HAS2 

overexpression and hyaluronidase knockdown reduce tumor growth rate in murine 

astrocytoma cell lines169. Similarly, administration of HMW-HA post-chemotherapy 

significantly inhibits tumor regrowth in colon carcinoma xenograft mice170. Native HA has 

also been reported to reduce the migratory capacity of aggressive cancer cell lines via 

strengthening the cell-cell junctions, thus decreasing the ECM permeability and preventing 

cancerous outgrowths 125. Moreover, native HA is a well-established microenvironmental 

anti-oxidant and ROS scavenger114–116. Recent findings report reduced γ-H2AX foci 

formation, a biomarker for DSB sites, corresponding to HMW-HA 

accumulation114,171,172,173, thus suggesting HA-mediated genoprotection as a possible 

cancer-prevention mechanism. HMW-HA/CD44 interaction is also a well-established 

inhibitor of inflammation through its regulation of the canonical NFκB signaling121,140. 

Mediated by p65/p50 heterodimers, NFκB is a pro-inflammatory pathway that promotes 
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the expression of SHH174,175, the activating ligand in sonic hedgehog signaling, which 

drives BCC initiation.  

Taken together, the current literature suggests that the continuous depolymerization of HA 

enhances the oncogenic potential of the microenvironment. In contrast, HMW-HA 

accumulation limits tumorigenicity by restricting proliferation, invasion, and provides 

genoprotection. However, further conceptual advancement is required to understand the 

distinct size-dependent biological effects of HA in the context of tumorigenesis, and to 

fully harvest the therapeutic potential of HA as a microenvironmental regulator.  

1.4.3 Phosphatidylethanolamine-linked high 

molecular-weight hyaluronan 

Although the accumulation of native HA is associated with offering protection against 

oncogenic assaults and tumorigenesis in mice157,176, human140,171, and naked mole-rats93,95, 

the role of HMW-HA has not yet been described in keratinocyte tumors. Conceptual 

advancements in the past decade have identified the primarily oncogenic driver and the 

cancer-initiating cells in the epidermal microenvironment, and established well-

characterized mouse models to study BCC. Thus, this keratinocyte cancer is an ideal 

disease model to interrogate the effects of microenvironmental agents on regulating the 

tumorigenic potential of cancer-initiating cells. Exogenous applications of HMW-HA have 

been reported to reduce inflammation in vitro 177 and restore skin homeostasis in aged mice 

by promoting epidermal barrier function178, all are critical to suppressing tumorigenesis. 

Although promising, current delivery methods failed to reliably and efficiently distribute 

and retain HA with molecular weights greater than 50kDa in the epidermis and dermis179–

181. This failure is likely due to the large molecular weight and high hydrophilicity of native 

HA, resulting in poor absorption across the hydrophobic stratum corneum182. Rapid 

degradation of exogenous HA formulation by cells and the dependency of receptor 

expression for pericellular coat formation further contribute to the failure of sustained 

HMW-HA delivery into the epidermis182.  

To address these issues, native hyaluronan polymers were linked to 

phosphatidylethanolamine (HA-PE) and incorporated into a topical formulation (patent 

number: US20130059769A1; E. Turley, WorlDiscoveries) 183.  To further investigate the 
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role of HA in offering BCC protection, HA-PE was applied onto the dorsal skin of UVB-

exposed Ptch+/LacZ/Hr-/- mice, which are susceptible to UVB-induced keratinocyte 

tumors184,185. HA-PE allowed the formation of sustained HA-coats on epidermal 

keratinocytes and dermal fibroblasts upon topical application 183. Previously, we 

demonstrated that the formation of HA-coat was independent of major HA receptors on the 

plasma membrane, CD44, but instead was augmented by its linkage with 

phosphatidylethanolamine183. The HA-coat sustained on cell membrane 72 hours post-

administration, which exceeds the normal native hyaluronan half-life in the epidermis183. 

This accumulation of epidermal HA was associated with no histologically-detectable 

keratinocyte tumor formation in BCC-susceptible mice, while control groups 

spontaneously developed keratinocyte tumors after UVB treatment.  

1.5 Animal models in BCC research 

An appropriate animal model should permit the analysis of the molecular pathogenesis 

underlying tumor initiation and allow for the assessment of preventative therapies. Key 

players in the sonic hedgehog pathway are ideal to study BCC in murine models since it is 

the primary oncogenic driver pathway in skin carcinogenesis. Mouse models carrying a 

heterozygous Ptch1 knockout, overexpression of SHH, mutant active SMO, and GLI2 have 

been well-characterized as appropriate models to study sporadic development of BCC58–62. 

Since inactivating mutations of PTCH1 is the most common genetic alteration in human 

BCCs and homozygous loss of Ptch1 is embryonically lethal, Ptch+/- mutants are the most 

appropriate model to study human BCC. A common Ptch+/- model is established by the 

replacing exon 1 and 2 of the Ptch1 allele with a LacZ gene, thus introducing an 

inactivating mutation 186. The Ptch1+/LacZ genotype increases susceptibility of sporadic 

BCC development upon chronic UV exposure (up to 32 weeks) in mice, and allows the 

protein product, β-galactosidase (β-gal), to be used as a reporter for Ptch1 expression 186.  

Mice carrying homozygous mutational inactivation of Hairless (Hr-/-), a transcriptional co-

repressor essential for hair cycling and growth187–189, is another model commonly used in 

dermatologic research concerning keratinocyte tumorigenesis186,190. More commonly used 

to study SCC initiation and progression, Hr-/- mice exhibits disrupted hair follicles and the 
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hairless phenotype (alopecia) after one round of normal hair cycling in newborn 

litters189,191. Biallelic Hr loss accelerates the keratinocyte tumor initiation process 

comparing to haired littermates, without altering the expression of sonic hedgehog and 

BCC-related oncogenic driver pathway components in mice186. Although the morphology 

of hair follicles is disrupted, the cell compositions and functions in the hair follicles are not 

altered191. Hairless phenotype also allowed us to directly apply topical HA-PE cream to 

directly assess the protective effects of HMW-HA. At the molecular and histological levels, 

UV-induced skin neoplasms in Hr-/- models closely resemble tumors in human 

patients186,190, therefore representing an appropriate model to examine keratinocyte tumors 

in mice.  

1.6 Hypothesis and objectives   

Since both carcinogens and initiating driver pathway mutations of BCC are well-

established in human and mice, we decided to interrogate the cancer resistant ability of 

HMW-HA in the context of BCC initiation. Previously, histopathological analyses reported 

the complete lack of keratinocyte neoplasm occurrence after HA-PE treatment in 

chronically UVB-exposed Ptch+/LacZ/Hr-/- mice. Here, I aim to identify the mechanisms of 

HA-mediated resistance against keratinocyte tumorigenesis. HA-PE treatment is 

hypothesized to offer resistance against BCC initiation through inhibiting the oncogenic 

driver, sonic hedgehog signaling pathway, in the epidermis and hair follicles of susceptible 

mice. Therefore, the following objectives were proposed to test this hypothesis.  

Objective 1: Verify HA-PE mediated inhibition of BCC tumor initiation by assessing 

sonic hedgehog signaling in Ptch+/LacZ/Hr-/- mice.  

We chose to investigate the sonic hedgehog pathway to assess tumor initiation, since its 

aberrant signaling is essential for BCC pathogenesis in human and mouse models29,32. The 

overexpression of PTCH1 and GLI1 are well-established molecular markers for signaling 

activities since they are both target genes and regulator of this oncogenic pathway. 

Moreover, the insertion of a promoterless E. coli LacZ gene into Ptch1 allows the usage of 

bacterial β-gal to measure Ptch1 promoter activity. LacZ insertion also introduces a 

heterozygous loss-of-function mutation in Ptch1, thus mimicking the genotype of sporadic 
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BCC patients40,43,66. Therefore, we used β-gal and GLI1 expression as a measurement of 

sonic hedgehog signaling and BCC initiation in Ptch+/LacZ/Hr-/- mice.  

Objective 2: Determine the cellular consequences of HA-PE application in 

Ptch+/LacZ/Hr-/- mice.  

To investigate the mechanisms that are responsible for the suppressive effects against 

UVB-induced BCC tumorigenesis, the cellular effects of HA-PE application on epidermal 

keratinocytes and hair follicle cells were examined. HMW-HA was reported to act as a 

genoprotective agent by acting as a free-radical scavenger114–116, thus the DNA damage in 

epidermis and hair follicles of UVB-exposed mice was assessed. Target genes of sonic 

hedgehog signaling (cyclin D1, BCL2) and associated cellular consequences (cell cycle 

progression and apoptosis) were also investigated in transgenic mice.  

Aim 1: Assess if HA-PE application protected keratinocytes from UVB- and ROS-induced 

DNA damage.  

Aim 2: Examine the effects of HA-PE on cell cycle progression and apoptosis in the 

epidermis of UVB-exposed mice.  
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Chapter 2  

2 Materials and methods 

2.1 Animal studies  

Experiments were approved by and compliant with the standard operating procedures of 

the Animal Use Subcommittee at the University of Western Ontario (2009-060). All animal 

experiments were conducted by Katelyn Cousteils, with detailed breeding schemas and 

conditions reported previously192. Briefly, female Hr-/-/SKH-1 mice (Strain 477, Charles 

River Laboratories, Wilmington, MA, USA) were crossed with Ptch+/LacZ/C57BL/6 male, 

haired mice (Stock number 003091, Jackson Laboratory, Bar Harbor, ME, USA). F1 litters 

between 14 to 21 days of age were genotyped for Ptch+/- heterozygosity. F1 Ptch+/-/Hr+/- 

male mice were crossed with F1 Ptch+/-/Hr+/- female mice, and F2 Ptch+/-/Hr-/- mice were 

utilized for the study.  

Ptch+/-/Hr-/- mice were separated into four experimental groups: no UVB control (No UVB, 

n= 5), UVB-only control (UVB, n=7), UVB with vehicle cream control (UVB + vehicle, 

n=10), and UVB with HA-PE cream (UVB+HA-PE, n=10). An UV-irradiation unit 

(Daavlin Co., Bryan, OH, USA) equipped with an electronic UV-dosage controller186 was 

used to administer UV radiation. Litters between 6 to 7 weeks of age were selected and 

exposed to UV irradiation, which was composed of UVA of 315-400 nm, accounting for 

20% of total energy; and UVB of 290-315 nm, accounting for 80% of total energy. Subjects 

were irradiated for 4 weeks and 26 weeks to study the acute and chronic effects of HA-PE 

on UVB-induced BCC, respectively. Litters received 180 mJ/cm2 of UVB irradiation twice 

per week (Thursdays and Fridays) for 30 to 45 seconds, while vehicle or HA-PE cream 

was applied prior to UVB-irradiation, once daily for five days each week (Monday to 

Friday).  

Lesions and skin abnormalities were measured using digital calipers (500-170-30, Aurora, 

IL, USA), excised using 8-mm punch biopsy from the dorsal back, and processed to be 

paraffin-embedded for histological analyses. Lesion-adjacent phenotypically-normal skin 
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was also excised using an 8-mm punch biopsy, frozen using 70% ethanol and dry ice and 

stored at -80℃.  

Histopathology analysis of skin abnormalities was conducted at the Centre for 

Phenogenomics (Toronto, ON, CA) using paraffin-embedded slides stained with H&E. 

Neoplasia was identified by histological features characteristic of BCC (large nuclei, scant 

cytoplasm, mitotic features), cell morphology, and clonal expansion.  

2.2 Immunohistochemistry  

Immunohistochemistry of paraffin-embedded tissue was conducted as previously 

described193. Briefly, sections were de-paraffinized through two passages of xylene for 15 

minutes each wash and rehydrated through a descending ethanol series (100%, 95%, 70%) 

for 10 minutes each change. Slides were washed in buffer (Table 1) and one change of 

dH2O for 5 minutes each. Antigen retrieval was performed using 10mM sodium citrate 

buffer (pH 6.0) in a standard microwave. Specimen were washed in the two changes of the 

appropriate buffer for 5 minutes each, and endogenous peroxidase activity was inhibited 

by incubating slides in 3% H2O2 for 20 minutes. Non-specific antibody binding was 

blocked by incubating slides in 3% bovine serum albumin (BSA) at room temperature for 

1 hour. Diluted primary antibody was added to each slide and incubated at 4℃ overnight 

in humidifying chambers, with non-immune anti-mouse immunoglobulin (IgG) incubated 

on the negative control (Table 1). Following two washes in the appropriate buffer solution, 

the slides were incubated with 1:100 biotinylated goat anti-rabbit secondary antibody 

(catalog number: E0432, Agilent Technologies, CA, USA) diluted in phosphate buffer 

saline (PBS: 137 mM NaCl, 12 mM phosphate, 2.7 mM KCl, pH 7.4) or Tris-buffer saline 

(TBS: 50 mM Tris-Cl, pH 7.5, 150 mM NaCl) at room temperature (approximately 25℃) 

for 2 hours in humidifying chambers. Streptavidin-conjugated horseradish-peroxidase 

(catalog number: ab7403, AbCam, MA, USA) was diluted in 1xPBS or TBS to 1:1000-

fold and added onto each slide for 30 minutes at room temperature, followed by incubation 

with diaminobenzidine substrate (DAB, catalog number: K3467, Agilent Technologies, 

CA, USA). Counterstaining was carried out using hematoxylin diluted 1:10-fold in ddH2O 

(10143-606, VWR, PA, USA). Sections were dehydrated by passaging through the ethanol 
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series (70%, 95%, 100%) and two changes of xylene. All slides were mounted using 

Cytoseal-60 (catalog number: 8310-16, ThermoFisher Scientific, MA, USA), and dried at 

room temperature.  

2.2.1 Image analysis  

 All sections were scanned using Aperio ScanScope (Leica Biosystems, Wetzlar, Germany) 

and analyzed using ImageJ or QuPath. All quantifications were conducted on the epidermis 

of animal sections, and keratinocytes within the field of view were quantified according to 

their epidermal compartmentalization (suprabasal layer, stratum basale, and hair follicles). 

For intensity quantification, the DAB channel in each image was separated from the 

hematoxylin channel using the “Colour deconvolution” algorithm, and measured using the 

“Pixel measurement” algorithms in ImageJ. DAB-stained brown pixels in slides from all 

experimental groups were compared to the negative control, which was used as the 

threshold. Semi-automatic positive cell counts of all slides were conducted using the 

“Positive cell detection” algorithm from QuPath (v0.1.9) as previously described194, and 

all algorithm-generated data were verified by manual counting.  

2.2.2 Vertical lineage tracing  

Vertical lineage tracing was conducted on γ-H2AX stained paraffin-embedded tissues. 

Daughter cells proliferating from progenitor cells in the stratum basale layer were 

identified, and the number of γ-H2AX positive daughter cells originating from the same 

progenitor cell was quantified through manual cell counting using ImageJ. All suprabasal 

keratinocytes and basal progenitor cells in images were quantified.  

2.3 Immunofluorescence and image analysis  

Immunofluorescence of paraffin-embedded tissue sections was conducted identically to the 

protocol for immunohistochemistry (section 2.2 and 2.2.1) described above, with the 

quenching of endogenous peroxidase omitted. After secondary antibody incubation using 

either Alexa 488-conjugated mouse anti-rabbit IgG (catalog number: A32731, Invitrogen, 

MA, USA) at 1:200-fold dilution or Alexa 555-conjugated mouse anti-mouse IgG (catalog 
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number: A32727, Invitrogen, MA, USA) at a 1:200-fold dilution, slides were washed in 

the appropriate buffer solution (Table 1). Sections were then mounted using DAPI-

containing ProLong Gold anti-fade mounting reagent (catalog number: P36931, 

ThermoFisher Scientific, MA, USA).  

All tissue sections were imaged using IX81 Olympus confocal microscope equipped with 

FV10-ASW 4.2 software at 20x or 40x magnifications. Images were saved in tiff format 

and quantified using ImageJ or QuPath as described above. Keratinocytes within the field 

of view were quantified according to their epidermal compartmentalization (suprabasal 

layer, stratum basale, and hair follicles). To quantify the intensity of antibody 

immunoreactivity, DAPI, FITC and TexasRed channels were first separated in ImageJ 

using the “Split channel” algorithm, and threshold against the negative control. Epidermal 

compartments in each field of view were selected manually, and the “Pixel measurement” 

algorithm was used to detect intensity. Similarly, individual colour channels were separated 

in QuPath and the “Positive cell detection” algorithm was used to detect keratinocytes 

positive for antibody staining as previously described194, and all algorithm-generated 

counts were verified manually. 
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Table 1: Antibodies and buffers used in immunohistochemistry and 

immunofluorescence of paraffin-embedded tissue sections. 

Primary antibody Catalog number Dilution Wash 

buffer 

Antigen 

retrieval buffer 

β-galactosidase  A11132, Life Technologies 

Corporation, CA, USA 

1:200 1xPBS  

 

 

 

 

 

10 mM Sodium 

citrate, pH 6.0 

GLI1 ab151796, Abcam, MA, USA 1:900 1xTBS 

CD44 553130, BD Biosciences, ON, CA 1:200 1xPBS 

RHAMM ab124729, Abcam, MA, USA 1:50 1xPBS 

Phospho-histone 

H2AX (Ser139) 

9718, Cell Signalling Technology, 

MA, USA 

1:150 1xTBS 

Bcl-2 sc-492, Santa Cruz Biotechnology 1:300 1xPBS 

Cyclin D1 ab16663, Abcam, MA, USA 1:100 1xTBS 

Ki67 ab16667, Abcam, MA, USA 1:100 1xPBS 

NFκB-p50 sc-114, Santa Cruz, Biotechnology 1:100 1xTBS 

NFκB-p65 Sc-8008, Santa Crux Biotechnology 1:100 1xTBS 

SMA ab124964, Abcam, MA, USA 1:100 1xPBS 

Cleaved caspase 3 

(Asp175) 

9664, Cell Signalling Technology, 

MA, USA  

1:50 1xTBS 10 mM Sodium 

citrate, 0.05% 

Tween-20, pH 

6.0 

Cytokeratin-15 ab80522, Abcam, MA, USA 1:100 1xTBS 
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2.4 Detection of HA in tissue sections and analysis 

HA detection in paraffin-embedded tissue sections was conducted similarly to the protocol 

for immunohistochemistry described above, with modifications stated below. Following 

de-paraffinization of slides, the antigen retrieval step was omitted. The primary antibody 

was replaced by an HA-binding biotinylated protein (catalog number: K-1203, Echelon 

Biosciences, UT, USA), and incubated at 37℃ for 1 hour. Negative control was established 

by replacing the HA-binding biotylinated protein with 3% bovine serum albumin diluted 

in PBS. Slides were incubated in 3% H2O2 for 15 minutes at room temperature and 

incubated with HRP/streptavidin diluted to 1:1000-fold in 1xPBS. DAB reagents were 

added onto each slide for 20 minutes at room temperature, and counterstained with Harris’ 

Hematoxylin (catalog number: 10143-606, VWR, PA, USA) at 1:10-fold diluted with 

dH2O. All slides were washed in 1xPBS for 10 minutes between each step. Sections were 

dehydrated by passage through the ethanol series and xylene in reverse, and mounted in 

Cytoseal-60. Quantification of HA staining was carried identically to the protocols for 

immunohistochemistry quantification described above.  

2.5 RT-qPCR  

2.5.1 Total RNA extraction from tissue 

RNA extraction from tissue was performed via standard trizol/chloroform extraction 

protocol. All equipment was cleaned with 70% ethanol and RNase-away solution (catalog 

number: 10328-011, Invitrogen, MA, USA). Briefly, approximately 1 gram of frozen skin 

biopsy and 500 μL of trizol (catalog number: 15596018, Life Technologies Corporation, 

CA, USA) were added into a micro-centrifuge tube, and homogenized using a hand-held 

Dounce homogenizer. Fresh 500uL of trizol were added to samples once they are 

adequately homogenized, followed by mixing by inversion and incubated at -20℃ for 5 

minutes. 200 μL of chloroform (catalog number: 423555000, Acros Organics, NJ, USA) 

was added to samples, vortexed for 10 seconds and incubated at room temperature for 3 

minutes. Samples were centrifuged at 4℃ for 15 minutes at 12,000 rpm, with the top 
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aqueous layer transferred into new tubes. Ice-cold isopropanol (500 μL) was added to 

samples and stored at -20℃ overnight. Samples were centrifuged at 4℃ for 30 minutes at 

12,000 rpm, and supernatants were discarded with the pellets washed in ice-cold 70% 

ethanol. Samples were centrifuged at 4℃ for 10 minutes at 7,500 rpm, and the supernatants 

were aspirated. Pellets were air-dried and resuspended in 20 μL of nuclease-free ddH2O, 

with the RNA concentration measured via NanoDrop One/OneC (ThermoFisher Scientific, 

MA, USA). Samples with an A260/280 > 1.9 and A260/230 > 1.7 were used for further 

experiments, and stored at -80℃ until further assays.  

2.5.2 In vitro reverse transcription  

Complementary DNA (cDNA) was synthesized using SuperScript IV VILO Master Mix 

kit (catalog number: 11756050, Invitrogen, MA, USA). 4 μL of SuperScript IV VILO 

master mix solution was incubated with 1 μg of RNA template and nuclease-free water for 

a final reaction volume of 20 μL. Samples were gently mixed at incubated at 25℃ for 10 

minutes to allow primer annealing, followed by incubation at 50℃ for 1 hour to allow 

elongation. Samples were then heated to 85℃ for 5 minutes to inactivate reverse 

transcriptase, briefly centrifuged and stored at -20℃ until further assays were performed.  

2.5.3 PCR reactions and analysis  

RT-PCR was performed to analyze CD44 expression in transgenic mice. Each PCR 

reaction consisted of 20 ng of cDNA template, 0.5 μL of 10 μM forward and reverse 

primers (Table 2), 0.5 μL of GC enhancer, 10 μL of AmpliTaq 360 master mix, and 

nuclease-free ddH2O to reach a total volume of 25 μL. PCR reactions were carried out at 

95℃ for 10 minutes, 94℃ for 30 seconds, 55℃ for 30 seconds, 72℃ for 30 seconds for 

40 cycles, and a final elongation step at 72℃ for 7 minutes using DNA Engine Tetrad 2 

Thermocycler (Bio Rad, CA, USA). All target gene expression was compared with the 

house control gene GAPDH on a 1% agarose gel containing ethidium bromide, and imaged 

using ChemiDocTM XRS+ System (Bio Rad, CA, USA). 
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2.5.4 Real-time PCR reactions and analysis 

RT-qPCR was performed to analyze the mRNA expression of Hyal2, Hyal3, Hmmr, Shh, 

Cccnb1, Cdk4, and Gapdh in transgenic mice. Each PCR reaction consisted of 20 ng of 

cDNA template, 0.5uL of 10uM forward and reverse primers (Table 2), 10 μL of SYBR 

Green PCR Master Mix (catalog number: 4309155, Thermofisher Scientific, MA, USA), 

and nuclease-free ddH2O to reach a total volume of 20 μL. PCR reactions were carried out 

on a 96-well plate at 95℃ for 3 minutes, 60℃ for 10 seconds, and 72℃ for 30 seconds for 

40 cycles using Stratagene Mx3000P system (Agilent Technologies, Santa Clara, CA). Ct 

values were exported from the thermocycler and analyzed using excel according to the 2-

△CT method.  
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Table 2: Primers used in RT-qPCR and RT-PCR.  

Gene Forward primer Reverse primer 

Hyal2 GCAGGACTAGGTCCCATCATC TTCCATGCTACCACAAAGGGT 

Hyal2 TCTGTGGTATGGAATGTACCCT TGCACACCAAAATGGGCCTTA 

CD44s GCCTACTGGAGATCAGGATG GATCCATGAGTCACAGTGCG 

CD44v3 GCCTACTGGAGATCAGGATG TCATTTTCCTCATTTGGCTCCC 

CD44v4 GCCTACTGGAGATCAGGATG TCTGGGTTTGAATGGTTTGGC 

CD44v8 ACAACCCTTCAGCCTACTGC GATCCATGAGTCACAGTGCG 

CD44 v10 CCCAGTGACCCCTGCTAAAA GATCCATGAGTCACAGTGCG 

Hmmr CCTTGCTTGCTTCGGCTAAAA AGCAAAGCTCAATGCAGCAG 

Shh GGCAGATATGAAGGGAAGAT ACTGCTCGACCCTCATAGTG 

Ccnb1 AGCAAATATGAGGAGATGTACC CGACTTTAGATGCTCTACGGA 

Cdk4 AACTGATCGGGACATCAAGG CAGGCCGCTTAGAAACTGAC 

Gapdh 
TGAGGCCGGTGCT 

GAGTATGTCG 

CCACAGTCTTCTG 

GGTGGCAGTG 
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2.6 Enzyme-linked immunosorbent assays 

2.6.1 DNA extraction from tissue 

Approximately 1 gram of frozen tissue sample was incubated in lysis buffer (1M Tris, 0.5M 

EDTA, 10% SDS, 5M NaCl, pH 8.0) and 20 mg/mL proteinase K (Roche, Mannheim, 

Germany) overnight at 55℃ with constant agitation. Samples were centrifuged at 200xg 

for 10 minutes at room temperature, and the supernatants in each sample were transferred 

into new tubes. 100 μL of Protein precipitation solution (catalog number: A975A, Promega 

Corporation, WI, USA) was added to samples and centrifuged at 14,000xg for 10 minutes. 

Supernatants were briefly chilled on ice followed by centrifugation at 14,000xg for 5 

minutes, with pellets discarded. Immediately after, ice-cold isopropanol (500 μL) was 

added to supernatants, mixed by inversion five times and incubated at -20℃ for 30 minutes. 

All samples were centrifuged at 14,000xg for 15 minutes, and pellets were washed with 

ice-cold 70% ethanol. After, samples were centrifuged at 14,000xg for 10 minutes again 

and washed pellets using ice-cold 70%. Resulting pellets were air-dried at room 

temperature and suspended in 20 μL of ddH2O. Sample concentration were measured using 

NanoDrop One/OneC (ThermoFisher Scientific, MA, USA), and stored in -20℃ until 

further use. Only samples with an A260/280 ratio between 1.8 to 1.9 were used in future 

experiments.  

2.6.2 8-oxo-2’-deoxyguanosine ELISA 

Nuclear ROS-adducts 8-oxo-2’-deoxyguanosine (8-oxo-dG) were detected using a 

commercially available ELISA kit (catalog number: 4380-096-K, Trevigen, MD, USA). 

DNA was extracted from frozen tissue as described in section 2.5.1. Samples were diluted 

in nuclease-free ddH2O to 200 μg/mL, and 100X cations (catalog number: 4380-096-05) 

was added for a final 1X concentration. 0.8 μL of DNase I (catalog number: 4380-096-06, 

5 U/uL) and alkaline phosphatase (catalog number: 4386-096-07) were added to each 

sample and incubated at 37℃ for 1 hour separately. Digested samples were aliquoted and 

stored at -20℃ until assayed. 8-oxo-dG standards (catalog number: 4380-096-01, 20 μM) 
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were serially diluted with assay diluent (catalog number: 4380-096-02) to construct a 

standard curve (200 nM, 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM, and 3.13 nM). 25 μL 

of standards, blank and DNA samples were pipetted in triplicates into a 96-well plate pre-

coated with 8-oxo-dG, with 25 μL of anti-8-OHdG monoclonal antibody (catalog number: 

4380-096-03, diluted 1:250-fold in assay diluent) added to each well. The plate was 

covered with a film sealer and incubated for 1 hour at 25℃. All wells were washed with 4 

changes of 1xPBST (137 mM NaCl, 12 mM phosphate, 2.7 mM KCl, pH 7.4, 0.1% Tween-

20) for 30 seconds, with excess liquid aspirated. Goat-anti-mouse IgG-HRP conjugate 

(catalog number: 4380-096-04, diluted 1:500-fold in assay diluent) was added to all wells, 

and incubated at 25℃ for 1 hour. The plate was then washed with 4 changes of 1xPBST 

with excessive liquid aspirated. 50 μL of room-temperature TACS-Sapphire colorimetric 

substrate (catalog number: 4822-096-08) was added to all wells, and incubated for 15 

minutes at 25℃ in the dark. The reactions were stopped by adding 50 μL of 5% phosphoric 

acid to all wells, and absorbance was read immediately at 450 nm.  

The average absorbance for all standards, samples and blanks were calculated, with the 

blank average subtracted from standard and sample averages to determine relative 

absorbance. The log of 8-oxo-dG standard concentration (ng/mL) was plotted against the 

relative absorbance to derive a standard curve, and 8-oxo-dG concentration in samples was 

calculated and interpolated from the standard curve. 

2.6.3 Cyclobutane pyrimidine dimer ELISA 

Protocol was carried at as described by the manufacturer (catalog number: STA-322, Cell 

Biolabs). Briefly, genomic DNA (gDNA) was extracted from tissue samples as described 

in section 2.7.1, and incubated at 95℃ for 10 minutes to denature double-stranded DNA 

(dsDNA) into single-stranded DNA (ssDNA). Samples were briefly chilled on ice, and 

diluted to 4 μg/mL in ice-cold 1xTE buffer (10 mM Tris, pH 8.0, 1mM EDTA). Similarly, 

CPD-DNA standards and reduced DNA provided in the commercial kit were denatured 

into ssDNA via incubation at 95℃ for 10 minutes. Standards were serially diluted to create 

a standard curve (0, 1.56, 3.13, 6.25, 12.5, 25, 50, 100 ng/mL) in ice-cold TE buffer. 

Samples and CPD-DNA standards were added to a 96-well plate, with an equal volume of 
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DNA binding solution added to each well and mixed thoroughly via pipetting. The plate 

was incubated at room temperature overnight with constant agitation. Solutions were 

aspirated and wells were washed twice with 1xPBS, with excess fluid removed by blotting. 

Assay diluent was added to each well to block non-specific binding at room temperature 

for 1 hour. After assay diluent was removed from well, anti-CPD antibody (catalog number: 

232202, Cell Biolabs) were diluted 1:1000 in 1xTE buffer and added to each well and 

incubated at room temperature for 1 hour with constant agitation. All wells were washed 

five times with wash buffer and blotted to remove excess fluid, followed by incubation 

with secondary antibody-HRP conjugate (diluted 1:1000 in 1xTE buffer, catalog 

number:10902, Cell Biolabs) at room temperature for 1 hour on an orbital shaker. Plate 

was washed five times in wash buffer and excess fluid was removed. Substrate solution 

warmed to room temperature was incubated in each well for 20 minutes, stop solution was 

added to each well to stop the enzyme reaction. Absorbance of all wells was read using a 

microplate reader at 450 nm immediately after stop solution addition. Reduced DNA 

standard was used as an absorbance blank, and all DNA samples were assayed in triplicates.  

The average absorbance for all standards, samples and blanks was calculated, with the 

blank average subtracted from standard and sample averages to determine relative 

absorbance. The CPD-DNA standard concentration (ng/mL) was plotted against the 

relative absorbance at OD450nm to derive a standard curve. The CPD concentration in 

extracted DNA was calculated and interpolated using the standard curve. 

2.7 Terminal deoxynucleotidyl transferase dUTP nick 

end labeling (TUNEL) assay  

Detection of apoptosis was carried out using ApopTag Fluorescein In Situ Apoptosis 

Detection Kit (S7110, EMD Millipore, MA, USA) following the protocol provided by the 

manufacturer. Briefly, slides were deparaffinized by passage through two changes of 

xylene (10 minutes each wash) and a descending series of ethanol (100%, 95%, and 70% 

for 5 minutes each wash), followed by one change of 1xPBS for 5 minutes. Slides were 

incubated in freshly diluted proteinase K (20 μg/mL) for 15 minutes at room temperature, 

and washed in 2 changes of 1xPBS for 2 minutes each wash. Equilibration buffer was 
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added to each specimen and incubated at room temperature for 30 minutes. Immediately 

afterward, 55uL of terminal deoxynucleotidyl transferase (catalog number: 90418, EMD 

Millipore, MA, USA) and reaction buffer (catalog number: 90417, EMD Millipore, MA, 

USA) mixture in 1:3 ratio was added to slides, and stored in humidified chambers at 37℃ 

for 1 hour. Negative and positive controls were established by omitting the reaction buffer 

in the mixture and treatment with DNase I (catalog number: 4380-096-06, 5U/uL, Trevigan, 

MD, USA) at 37℃ for 1 hour, respectively. Reaction was stopped by incubating in Stop 

Buffer (catalog number: 90419, EMD Millipore, MA, USA) at room temperature for 10 

minutes, followed by 3 washes in 1xPBS for 1 minute each wash. Room-temperature 

mixture containing anti-digoxigenin conjugate (catalog number: 90426, EMD Millipore, 

MA, USA) and blocking solution (catalog number: 90425, EMD Millipore, MA, USA) 

was added to each specimen, and incubated at room temperature for 30 minutes in the dark. 

All slides were washed in 4 changes of 1xPBS for 2 minutes each wash, and counterstained 

with DAPI-containing ProLong Gold anti-fade mounting reagent. All specimens were 

stored at -20℃ in the dark.  

Images were captured on IX81 Olympus confocal microscope using the negative control 

as the minimal threshold for laser settings. All images were analyzed using ImageJ to 

manually count TUNEL-positive cells in each image (approximately 1000 cells per field), 

with the interfollicular epidermis and hair follicles quantified separately.  

2.8 Hyaluronidase activity ELISA-like assay  

Detection of hyaluronidase activity in whole skin samples was conducted as described 

previously195,196. Briefly, 3 grams of tissue was suspended in ice-cold homogenization 

buffer (5 mM HEPES, pH 7.2; 1 mM benzamidine-HCl) and homogenized using a Dounce 

homogenizer (Ika Works Inc, Wilmington, NC). Lysate was centrifuged at 10,000xg for 

30 minutes, with total protein concentration measured through BCA assay and compared 

to a BSA standard curve.  

A 96-well plate was coated with high molecular-weight human umbilical hyaluronan (200 

μg/mL, H1876, Sigma-Aldrich, MO, USA) diluted in 0.1M sodium bicarbonate solution 
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(pH 9.2) overnight at 4℃. HA-coated wells were washed three times in 1xPBST. Tissue 

samples were diluted in reaction buffer (0.1 M sodium acetate, 0.15 M NaCl, 0.2 mg/mL 

BSA, pH 5.3) and 10 μg of total protein was loaded in each well. Purified bovine 

hyaluronidase (catalog number: H3506-1G, Sigma-Aldrich, MO, USA) and an HA-coated 

well with only reaction buffer were used as the positive and negative control, respectively. 

The 96-well plate was incubated at 37℃ for 6 hours to allow HA digestion. All wells were 

washed thrice in 1xPBST.  

Using hyaluronan enzyme-linked immunosorbent assay kit (catalog number: K-1200, 

Echelon Biosciences Inc., UT, USA), the remainder of HA in each well detected as a 

measurement of hyaluronidase activity. HA detection was carried out according to the 

protocol provided by the manufacturer with modifications stated as below. 100 μL of 

biotinylated HA-binding protein (catalog number: K-1203, Echelon Biosciences Inc., UT, 

USA) was added to all wells and incubated at 37℃ for 1 hour. Wells were aspirated and 

washed with 1xPBST three times, with excessive fluid blotted. Enzyme (catalog number: 

K-1206, Echelon Biosciences Inc., UT, USA) was diluted by adding 6 mL of diluent 

provided by the kit (catalog number: K-1204, Echelon Biosciences Inc., UT, USA), and 

added to each well and incubated at 37℃ for 30 minutes. Wells were aspirated by blotting. 

Substrate buffer (catalog number: K-1208, Echelon Biosciences Inc., UT, USA) and one 

pellet of the substrate, p-nitrophenyl phosphate tablet, were mixed together and added to 

each sample and incubated at room temperature for 40 minutes in the dark. Plate was 

immediately read using a plate reader (Synergy H4 Hybrid Reader, BioTek, VT, USA) at 

405 nm, with OD405nm inversely proportional to the HA remaining in each well after 

hyaluronidase digestion. 

2.9 HA size determination by agarose gel  

2.9.1 HA isolation from tissue  

HA extraction from tissue was conducted as described previously195,196. Briefly, 3 grams 

of whole skin sample was incubated overnight at 50℃ with constant agitation in digestion 

buffer (10 mM Tris-Cl, 25 mM EDTA, 100 mM NaCl, 0.5% SDS) and 20mg/mL 
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proteinase K. EDTA was chelated by adding 27 mM of MgCl2, and proteinase K was 

inactivated at 95℃ for 10 minutes. Nucleic acids were removed by benzonase nuclease 

(500 U/μL, catalog number: E1014, Sigma-Aldrich, MO, USA) digestion at 37℃ overnight. 

The absence of nucleic acid was confirmed by running samples on 1% agarose gel stained 

with ethidium bromide at 100V for 40 minutes. Samples were purified through standard 

phenol/chloroform protocol followed by ethanol precipitation. Briefly, samples were 

mixed with 1:1 v/v phenol/chloroform, and centrifuged at 8,000xg for 15 minutes. The 

aqueous phase was transferred to a new tube, with an equal volume of chloroform added 

and centrifuged at 10,000xg for 15 minutes. This step was repeated twice, followed by the 

addition of 2.5 volumes of ice-cold 100% ethanol to the aqueous phase. Samples were 

stored at -20℃ overnight to maximize precipitation. All samples were centrifuged for 10 

minutes at 14,000xg and supernatants were discarded. Pellets were washed with 4 volumes 

of ice-cold 70% ethanol, and centrifuged for 10 minutes at 14,000xg. Pellets were air-dried 

at room temperature, and resuspended in 20 μL of 10 mM Tris-Cl (pH 8.5). Samples were 

stored at -20℃ until gel electrophoresis.  

2.9.2 Gel electrophoresis and visualization  

The protocol of determining HA polymer size through gel electrophoresis was adapted 

from previous literature195–197. Briefly, agarose was diluted in 1xTAE buffer (40mM Tris, 

20mM glacial acetate acid, 2mM EDTA, pH 8.5) and dissolved in a microwave, followed 

by incubation at 45℃ for 15 minutes. Electrophoresis chambers were filled with 1xTAE 

and ran at 100V for 20 minutes to clear impurities from the agarose gel. Samples were 

separated into two reactions, with one reaction incubated with purified bovine 

hyaluronidase (catalog number: H2506, Sigma-Aldrich, MO, USA) at 37℃ for 1 hour as 

a negative control. Loading dye (0.02% bromophenol blue, 85% glycerol) was added to 

both reactions. The HA polymer size in reactions was visualized on a 2.5% agarose gel, 

and gel electrophoresis was carried out at 90V for 1 hour, followed by 100V for 2.5 hours. 

Agarose gel was placed in staining solution (0.005% Stains-all, 50% ethanol) in the dark 

overnight at room temperature, then briefly de-stained in dH2O for 20 minutes in the dark 

with constant agitation. Afterward, a freshly-diluted concentrated staining solution (0.01% 
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Stains-all, 50% ethanol) was incubated with the agarose gel for 40 minutes. The final de-

staining step was carried out in dH2O for 2 hours in the dark with constant agitation.  

2.10 Statistical analyses  

Experimental data are presented as mean ± standard error mean (SEM), with significances 

detected at p-value < 0.05. All immunofluorescence and immunohistochemistry 

experiments were performed with a sample size of n=3 animals per treatment group, 5 

replicates per animal. All ELISA and RT-PCR experiments were conducted in triplicates. 

Significances were calculated using two-sample t-test or one-way ANOVA, followed by 

Tukey’s test as post-hoc analyses in GraphPad Prism 7 (GraphPad Software, Ca, USA, 

www.graphpad.com) for quantitative analyses for immunohistochemistry.  

 

http://www.graphpad.com)/
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Chapter 3  

3 Results  

3.1 HA-PE application promotes epidermal HA 

accumulation   

To explore the potential role of HA in preventing skin tumorigenesis, HA-PE was topically 

applied onto the dorsal skin of UVB-exposed Ptch+/Lacz/Hr-/- mice. HA-PE application 

significantly increased total HA in the epidermis, hair follicles and the dermis (Figure 3). 

This accumulation corresponded to significantly reduced hyaluronidase-2 (Hyal2) mRNA 

expression, an isoform that preferentially targets surface high molecular-weight HA for 

degradation. In contrast, the mRNA expression level of hyaluronidase-3 (Hyal3), a 

lysosomal isoform that promotes LMW-HA cleavage into oligosaccharides, remained 

unchanged (Figure 4.A). A significant decrease in total hyaluronidase activity in skin was 

also observed after HA-PE application, corresponding to the increased accumulation of 

epidermal HA (Figure 4.B). Since decreased hyaluronidase activity and enhanced HA 

accumulation are associated with reduced tumorigenicity in murine models157,198, I next 

examined sonic hedgehog signaling, which is the primary oncogenic driver underlying 

BCC, in the interfollicular epidermis and hair follicles of UVB irradiated Ptch+/Lacz/Hr-/- 

mice.   
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Figure 3: Detection of HA content in the interfollicular epidermis and hair follicles of 

Ptch+/LacZ/Hr-/- mice following 26 weeks of UVB exposure. A. HA-PE enhanced HA 

staining intensity in epidermal keratinocytes and hair follicle cells. Insets emphasize HA 

content in the hair follicles, with black arrowheads indicating HA expression on plasma 

membrane. Interfollicular epidermis and associated hair follicles are separated from the 

underlying dermis by the black dash line. HA content is detected using an HA-binding 

biotinylated protein and detected via DAB reagent (brown), followed by counterstaining 

with hematoxylin. B. Quantitative analysis of HA content detection in paraffin-embedded 

tissue sections. Intensity of immunoreactivity was measured using ImageJ and threshold 

against a negative control, established by omitting the HA-binding protein incubation, as a 

baseline. All values represent mean and SEM for a sample size of n=3 animals per group, 

with 5 replicates per animal (two-sample t test, * p<0.05).  
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Figure 4: Effects of topical HA-PE administration on hyaluronidase expression and 

activity. A. HYAL2 and HYAL3 mRNA expression in susceptible mice after 4 weeks of 

UVB irradiation. HA-PE application significantly prevented UVB-induced HYAL2 

expression. No changes in HYAL3 mRNA level were observed (n=3 animals/treatment 

group, 4 replicates; two-sample t-test, * p<0.05); B. Total hyaluronidase activity of murine 

skin biopsy samples after 4 weeks of irradiation, detected via an ELISA-like assay. 

Statistical significance was detected via one-way ANOVA, followed by Tukey’s test (n=3 

animals/treatment group, 3 replicates; ** p<0.01). For A. and B, all values are displayed 

as mean ± SEM of samples.  
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3.2 Suppressive effects of HA-PE on sonic hedgehog 

signaling 

To explore the role of epidermal HA accumulation in preventing keratinocyte tumor 

initiation, activation of the oncogenic driver pathway, sonic hedgehog signaling, was 

investigated in Ptch+/LacZ/Hr-/- mice. The insertion of a promoterless LacZ-neo fusion gene 

replaced part of exon 1 and the entire exon 2 in Ptch1, thus producing a heterozygous loss-

of-function mutation and allowing β-gal to be used as a marker for sonic hedgehog 

signaling, since Ptch1 gene expression is induced by the activation of this pathway186. HA-

PE significantly prevented β-gal overexpression in the interfollicular epidermis (IFE) and 

hair follicles of UVB-exposed mice compared to both UVB- and vehicle-treated controls, 

which exhibit aberrant overexpression of β-gal in IFE, sebaceous gland, the bulge region 

and outer root sheath of hair follicles (Figure 5.A,B). To verify HA-PE mediated shutdown 

of this oncogenic pathway in the epidermis and associated epidermal structures, I next 

examined the expression pattern of GLI1, which is a hedgehog target and transcriptional 

factor that is a well-characterized indicator of sonic hedgehog signaling activation. Strong 

nuclear staining for GLI1 is evident in the epidermis and hair follicles of UVB- and vehicle-

treated controls, indicating increased expression and nuclear translocation of this 

transcription factor. In comparison, HA-PE significantly restricted GLI1 expression and 

nuclear accumulation in the IFE and hair follicles back to non-irradiated control levels 

(Figure 6. A,B). GLI1 is minimally expressed in the ORS by both non-irradiated age-

matched control and HA-PE treatment group, whereas aberrant expression is observed in 

all compartments of the hair follicle by UVB- and vehicle-control groups.  

Given LacZ insertion in susceptible mice does not affect the protein product of the second 

Ptch allele, functional tumor-suppressor at the cell membrane can still inhibit downstream 

sonic hedgehog signaling. Therefore, I investigated the expression of SHH, the ligand that 

binds and triggers PTCH1 endocytosis at the membrane. SHH expression was significantly 

reduced post-HA-PE treatment comparing to UVB-treated, vehicle-treated and non-

irradiated controls (Figure 6. C). Taken together, these findings suggest topical HA-PE 

application substantially decrease inappropriate oncogenic sonic hedgehog signaling in the 
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epidermis of UVB-exposed susceptible mice, possibly through the inhibition of SHH 

expression. Since dysregulated hedgehog signaling often results in hyperproliferation 

29,46,66, I next investigated the proliferative responses of keratinocytes to HA-PE application.  
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Figure 5: Suppressive effect of HA-PE application on UVB-induced BCC initiation 

using E.coli LacZ expression as a marker in susceptible mice. A. Immuno-staining of 

bacterial β-galactosidase (green) in murine skin sections counterstained with DAPI (blue). 

Negative and positive controls are established using a mouse that does not express the 

bacterial transgene and a tumor section from a Ptch+/LacZ:Hr-/- mouse in the vehicle control 

group, respectively. HA-PE significantly prevented inappropriate expression of β-gal in 

the epidermis in susceptible mice subjected to 26 of chronic UVB irradiation; B. 

Quantitative analysis of β-galactosidase immuno-staining. Cells in the interfollicular 

epidermis and hair follicles were quantified based on positive immunoreactivity of 

bacterial β-gal through counting in QuPath. All values are displayed as mean ± SEM of 

samples, and statistical significance was analyzed using two-sample t test (n=3 

animals/treatment group, 5 replicates/animal; * p<0.05, ** p<0.01, *** p<0.001). 
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Figure 6: HA-PE prevents oncogenic sonic hedgehog signaling in UVB-exposed 

murine epidermis. A. Global prevention of inappropriate GLI1 expression and nuclear 

accumulation in susceptible mice receiving 26 weeks of irradiation following HA-PE 

administration. Slides are counterstained with hematoxylin and eosin (blue). Brown 

staining indicates positive GLI1 expression by DAB detection. Hair follicle structure is 

depicted in insets with black arrowheads indicating GLI1+ cells. B. Quantitative analysis 

of GLI1 in the interfollicular epidermis and hair follicles. GLI1 expression in each 

epidermal compartment was quantified by counting cells with positive GLI1 

immunoreactivity in the nucleus using QuPath (n=3 animals/treatment group, 5 

replicates/animals; two-sample t test, * p<0.05); C. SHH mRNA expression assessed 

through RT-qPCR. Epidermal enhancement of modified HMW-HA significantly reduced 

SHH expression in skin samples of susceptible mice exposed to 4 weeks of irradiation (n=3 

animals/treatment group, 4 replicates/animal; two-sample t-test, * p<0.05, **** p<0.0001). 

For B. and C, all values are displayed as mean ± SEM of samples. 
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3.3 HA- PE restricts cell cycle progression in 

susceptible mice  

To elucidate the proliferative response of keratinocytes of UVB-exposed susceptible mice 

to HA-PE administration, I conducted immunohistochemistry of cyclin D1 and Ki67 on 

paraffin-embedded tissue sections (Figure 7, 8). Cyclin D1 is a target gene of sonic 

hedgehog signaling, and is often upregulated in BCC tumors and pre-neoplastic skin lesion 

following UVB irradiation199. Quantification of immunohistochemistry demonstrated a 

significant reduction in cyclin D1 expression in the hair follicles by HA-PE (Figure 7.B) 

compared to UVB and vehicle controls, indicating prevention of UVB-induced 

proliferation. As an additional proliferation marker, Ki67 expression in hair follicles was 

quantified by immunohistochemistry (Figure 8.A). No difference of Ki67 expression was 

observed in the suprabasal and basal layer of the interfollicular epidermis between 

irradiated control, vehicle control and HA-PE treatment192. Instead, Ki67 expression in the 

hair follicle following HA-PE treatment was less than that of the UVB and vehicle controls 

(Figure 8.B), especially in the bulge region, where the cancer-initiating cytokeratin-15 

positive stem cells reside (Supplemental Figure 2).  Further, HA-PE treatment maintained 

the typical skin architecture of a distinctive stratum basale separated from suprabasal layers.  

In contrast, this organized tissue architecture is absent in irradiated controls (Figure 7 A), 

marked by the loss of a distinctive boundary between the stratum basale and suprabasal 

layers. Together, these findings predict HA-PE restricts the oncogenic potential of UVB-

exposed hair follicles by inducing mitotic quiescence, possibly via regulating cyclin D1 

expression to restrict G0/G1 progression. Since HA is an extracellular agent and requires 

receptor binding to induce intracellular signaling, I next examined the major HA receptor 

expression in UVB-exposed mice.  
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Figure 7: HA-PE promotes quiescence in hair follicles. A. Immunohistochemistry of 

Cyclin D1 expression in susceptible mice exposed to 26 weeks of irradiation. Slides were 

counterstained with hematoxylin (blue) with cyclin D1 detected via DAB (brown). HA-PE 

significantly prevented cyclin D1 overexpression in the hair follicles (black arrowheads) 

comparing irradiated controls. The distinct separation between suprabasal layers and 

stratum basale, a characteristic indicative of a homeostatic epidermis, is maintained by HA-

PE (black dashed line separating suprabasal layers and stratum basale), whereas irradiated 

controls do not display clear boundaries between the basal and suprabasal layer. B. 

Quantitative analyses of cyclin D1 staining in hair follicles. Cells in each epidermal 

compartment positive for cyclin D1 expression were counted, and the percentage of cyclin 

D1 positive cells per animal was analyzed via two-sample t test (* p<0.05, n=3 

animals/treatment group, 5 replicates/animal). All values are displayed as mean ± SEM of 

samples. 
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Figure 8: Immunohistochemistry analysis of Ki67 expression in hair follicles of UVB 

irradiated mice after HA-PE application. A. Immunohistochemistry of Ki67 (brown), 

showing decreased expression in the bulge region of hair follicles after HA-PE application 

in susceptible mice following 4 weeks of irradiation. Arrowhead indicates the bulge region 

where adult stem cells reside. B. Quantitative analyses of Ki67 staining in hair follicles. 

Ki67-positive cells in each image were counted in QuPath, and the percentages of Ki67+ 

cells per animal were analyzed via two-sample t test (* p<0.05, *** p<0.001, **** 

p<0.0001; n=6 animals/treatment group, 5 replicates/animal). All values are displayed as 

mean ± SEM of samples. 
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3.4 CD44 and RHAMM expression in HA-PE treated 

skin 

Since HMW-HA mediates downstream signaling through interaction with cell surface 

receptors, the expression of CD44 and RHAMM were examined. Immuno-staining 

demonstrated upregulated expression of pan-CD44 in the epidermis and hair follicles 

(Figure 9.A, B), whereas RHAMM expression was unaltered at both the protein and mRNA 

level (Figure 9.B, 10.B). To determine if specific CD44 isoform expression is altered by 

HA-PE administration, RT-PCR experiments were conducted using primers flanking the 

variable regions to identify alternatively spliced variants of CD44 (Figure 10.A). HA-PE 

administration resulted in upregulated CD44v3 isoform expression, which is characteristic 

of homeostatic keratinocytes (Figure 10.A). In contrast, no differences were observed in 

the CD44 standard form (CD44s, Figure 9.A) or variant isoforms (CD44v4, v8, v10) in 

UVB-exposed vehicle and HA-PE treated skin (Supplemental Figure 1). To investigate the 

connection between CD44, HA and prevention of sonic hedgehog signaling in susceptible 

mice, the signaling pathways modulating SHH expression were examined next.  
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Figure 9: CD44 and RHAMM expression in chronically UVB irradiated epidermis 

following HA-PE application. A. Double immunofluorescent labelling of CD44 (red) and 

RHAMM (green) in epidermis using pan-antibodies. Slides were counterstained with 

DAPI shown in blue. RHAMM-/- mouse skin section stained with both CD44 and RHAMM 

to establish a negative control to confirm antibody specificity. HA-PE application 

enhanced CD44 expression in the epidermis of susceptible mice after 26 weeks of 

irradiation, whereas RHAMM expression remains unaltered. In contrast to CD44, 

RHAMM is primarily expressed in sebaceous glands and the outer root sheath of hair 

follicles. B. Quantitative analysis of CD44 and RHAMM expression levels. Intensity of 

immunoreactivity in the interfollicular epidermis was quantified using ImageJ. All values 

are displayed as mean ± SEM of samples (n=3 animals/treatment group, 5 replicates/animal; 

two-sample t test, * p<0.05).  
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Figure 10: Alterations in HA receptor mRNA expression after HA-PE treatment. A. 

CD44v3 expression is increased by HA-PE in susceptible mice after 4 weeks of UVB 

irradiation. Black arrowheads indicate v3 expression (n=3 animals/treatment group, 3 

replicates/animal. Experiment was repeated 3 times); B. mRNA expression level of 

RHAMM assessed by RT-qPCR. No statistically significant differences were observed 

between HA-PE and control groups (n=3 animals/treatment group, 4 replicates/animal; 

two-sample t test). For A. and B, all values are displayed as mean ± SEM of samples. 
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3.5 Effects of HA-PE on NF-κB signaling  

Although current literature does not provide a direct connection between HMW-HA/CD44 

interaction and sonic hedgehog signaling, HMW-HA/CD44 is a well-established negative 

regulator of canonical NF-κB signaling121,140, which is a pathway that can induce SHH 

expression to activate the oncogenic driver sonic hedgehog signaling174,175. Moreover, 

mutational  inactivation of Hr results in sustained inflammation driven by NF-κB signaling, 

which accelerates BCC tumorigenesis in Ptch+/LacZ/Hr-/- mice186. To explore the role of NF-

κB signaling in relation to HA-mediated inhibition of oncogenic sonic hedgehog signaling, 

nuclear localization of the p50 and p65 subunits were assessed through immunostaining 

analysis of paraffin-embedded tissue sections. HA-PE significantly prevented UVB-

induced nuclear localization of p50 in the interfollicular epidermis and hair follicles of 

UVB-exposed mice (Figure 11). However, no difference in p65 localization was detected 

between vehicle control and HA-PE-treated mice as evident by its nuclear translocation. 

Since only p65 in the p65/p50 heterodimer possesses a trans-activating domain that can 

promote the expression of pro-inflammatory genes200, these results indicate that HA-PE 

does not suppress the canonical NF-κB pathway. Therefore, I next assessed whether HA-

PE suppressed UVB-induced DNA damage as a mechanism of tumor prevention.   
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Figure 11: Nuclear NFκB localization in the epidermis of Ptch+/LacZ/Hr-/- mice after 4 

weeks of UVB irradiation. HA-PE significantly prevented UVB-induced nuclear 

localization of both subunits in the interfollicular epidermis. However, this prevention of 

p65 localization was not unique to HA-PE application since vehicle control demonstrated 

similar suppressive effects. Quantitative analyses of p50 and p65 nuclear localization was 

conducted by counting cells exhibiting positive immunoreactivity in the nucleus. All cells 

in the interfollicular epidermis and hair follicles per image were quantified in QuPath. 

Statistical analysis was conducted using two-sample t test (n=3 animals/treatment group, 5 

replicates/animal; * p<0.05). All values are displayed as mean ± SEM of samples. 
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3.6 Keratinocytes are not protected from DNA damage 

by HA-PE in susceptible mice 

To investigate the potential genoprotective role of HMW-HA114–116,166–168, on keratinocytes 

and adult stem cells in susceptible mice, DSBs and UVB-/ROS-signature mutations were 

quantified by immunohistochemistry and ELISA assays. Interestingly, the suppression of 

BCC initiation is not associated with a detectable reduction in DNA damage (Figure 12, 

13). A significant increase in γ-H2AX foci formation in cells within the interfollicular 

epidermis and hair follicles was associated with UVB treatments, possibly due to the 

collapse of replication forks. However, a similar level of DSBs was observed in both the 

vehicle control and HA-PE-treated mice (Figure 12.A,B). To assess whether differences in 

ROS-induced and direct UVB-induced damage existed between the control and 

experimental groups, ELISA was performed to examine 8-oxo-dG and CPD formations in 

susceptible mice (Figure 13. A, B).  Again, no significant differences in UVB- and ROS-

induced DNA damage were detected between the irradiated vehicle control and HA-PE-

treated group. Vertical lineage tracing of proliferating progenitor cells originating from the 

stratum basale was used as a preliminary method to assess DSB repair activity in the 

epidermis. However, these analyses demonstrated no significant differences between all 

experimental groups (Figure 12. C). predicting similar repair activities between control and 

experimental groups are similar. Collectively, these findings demonstrate that the mice 

receiving HA-PE treatment exhibit a similar DNA damage load in IFE and hair follicles as 

the UVB- and vehicle-treated controls, and that differences in DNA damage, and 

potentially mutational load, do not account for HA-PE suppression of BCC. Since the 

accumulation of DNA damage may overwhelm the repair machinery and trigger 

programmed cell death, I next examined apoptosis as a potential mechanism in the removal 

of these harmful cells. 
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Figure 12: HA-PE does not alter the double-stranded breaks in the epidermis of 

susceptible mice after 4 weeks of UVB irradiation. A. Immunohistochemistry of γ-

H2AX in paraffin-embedded tissue counterstained with hematoxylin (blue). Brown 

staining is indicative of γ-H2AX foci formation. B. Quantitative analysis of γ-H2AX foci, 

a marker for double-stranded DNA breaks, in the epidermis and hair follicles. Cells in the 

interfollicular epidermis with strong  γ-H2AX  immunoreactivity were quantified, and the 

percentage of γ-H2AX positive cells in each epidermal compartments were analyzed for 

statistical significance. However, foci formation is not significantly different between 

control and treatment groups; C. Vertical lineage tracing of damage-sustaining progenitor 

cells and γ-H2AX+ daughter cells in the interfollicular epidermis. The percentage of 

daughter cells positive for γ-H2AX foci within a lineage was quantified thorough QuPath 

by counting. For B, and C, two-sample t test was conducted to assess statistical significance 

(* p<0.05; n=3 animals/treatment group, 5 replicates/animal). All values are displayed as 

mean ± SEM of samples. 
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Figure 13: ROS- and UVB-induced DNA damages are not altered by HA-PE 

application following 4 weeks of irradiation. ROS/UVB-induced DNA damages are 

measured by the ROS-adduct 8-oxo-dG and cyclobutane pyrimidine dimer (CPD) 

formation in extracted DNA, respectively. No statistically significant difference in DNA 

damages are observed between irradiated, vehicle-treated controls, and HA-PE treated 

group. Statistical analysis was conducted by two-sample t test, experiments were repeated 

3 times (* p<0.05, ** p<0.01; n=3 animals/treatment group, 5 replicates/animal). All values 

are displayed as mean ± SEM of samples. 
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3.7 HA-PE application promotes selective apoptosis in 

hair follicles  

BCL2 is a pro-survival protein and a target gene that is upregulated by sonic hedgehog 

signaling in BCC tumorigenesis, and is often over-expressed to facilitate cancer cell 

survival by preventing cytochrome c release from the mitochondria201,202. To elucidate 

whether apoptosis contributes to HMW-HA-mediated resistance against BCC initiation, I 

first quantified BCL2 expression in the epidermis and hair follicles of susceptible mice. 

Expression of epidermal and follicular BCL2 was suppressed following HA-PE application 

in UVB-irradiated mice, whereas UVB- and vehicle-treated controls exhibited an elevation 

of this pro-survival protein in the epidermis and hair follicles (Figure 14).   BCL2 is an 

early participant in the apoptosis cascade202.  To verify these results and to establish 

whether keratinocyte apoptosis is altered by HA-PE, TUNEL assay, which marks late-stage 

apoptosis, was quantified.  Interestingly, HA-PE promotes apoptosis in cell subsets within 

the outer root sheath and bulge of hair follicles, where the K15+ stem cells that are known 

to be cancer-initiating in the Ptch+/LacZ mouse model reside (Supplemental Figure 2)58,60–62. 

Apoptosis in these hair follicle regions was uniquely observed in HA-PE treatment, 

whereas control groups only exhibited apoptosis of suprabasal keratinocytes near the 

stratum corneum that is typical of normal keratinocyte turnover (Figure 15).  

To further identify the nature of these hair follicle stem cells, I double-labeled paraffin-

embedded tissue sections with a marker for BuSCs, K15, together with a marker for 

apoptosis, caspase 3. Immunofluorescent co-localization analyses demonstrated that 40% 

of total K15+ cells in the hair follicles are apoptotic, as indicated by positive caspase 3 

expression at week 26 of irradiation (Figure 16.A,B). Consistent with these data, K15+ cells 

were continuously lost between week 6 and 26 following HA-PE administration, while the 

number of K15+ cells in non-irradiated, UVB-exposed and vehicle controls remained 

constant (Figure 16.C).  Given K15 is a well-established marker of BuSCs 61,203,204 that can 

give rise to BCC58,60,62, these data suggest HA-PE promotes the removal of these K15+ 

stem cell via apoptosis as a mechanism of cancer prevention. To verify K15+ cells are the 

cancer-initiating cells in this model, I next investigated the origin of tumors through 

examining the histopathology of identified BCCs in Ptch+/LacZ/Hr-/- mice.  
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Figure 14: HA-PE reduces pro-survival BCL2 expression in the interfollicular 

epidermis and hair follicles of susceptible mice after 26 weeks of UVB irradiation. A. 

Immunohistochemistry of BCL2 detected via DAB (brown). Black arrowheads indicate 

BCL2+ cells in the bulge of hair follicles; B. Quantitative analyses of BCL2 expression in 

the epidermis and hair follicles. Percentage of cells positive for BCL2 immunoreactivity in 

the interfollicular epidermis and hair follicles was quantified via counting in QuPath. All 

values are displayed as mean ± SEM of samples, and analyzed using two-sampled t test (* 

p<0.05, ** p<0.01; n=3 animals/treatment group, 5 replicates/animal). 
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Figure 15: HA-PE enhances apoptosis in the outer root sheath and bulge region of 

hair follicles of mice following 26 weeks of irradiation. A. TUNEL analysis of paraffin-

embedded tissue. Apoptotic cells are labeled in green and counterstained with DAPI (blue). 

White arrowheads indicate apoptotic cells in hair follicles; B. Quantitative analysis of 
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apoptotic cells in the hair follicle. Five images were taken per sample, and the percentage 

of apoptotic cells in was quantified through counting cells with green fluorescence per 

image. All values are displayed as mean ± SEM of samples. Two-sample t test was 

conducted to assess significance (* p<0.05, n=3 animals/treatment group, 5 

replicates/animal). 
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Figure 16: HA-PE enhances apoptosis in K15+ adult stem cells in hair follicles of UVB-

irradiated susceptible mice. A. Double-labeled immunofluorescent analysis of K15 (red) 

and caspase 3 (green), counterstained with DAPI (blue). White arrowheads indicate co-

localization of K15 and caspase 3 in hair follicles of Ptch+/LacZ/Hr-/- mice after 26 weeks of 

irradiation; B. Quantitative analyses of immunofluorescent staining. All K15 cells positive 

for caspase 3 staining in hair follicles were counted, and analyzed via two-sample t test (* 

p<0.05; n=3 animals/treatment group, 5 replicates/animal); C. Number of K15+ cells in 

hair follicles of susceptible mice after 4 and 26 weeks of irradiation. Cells displaying 

positive immunoreactivity for K15 in each image were counted (approximately 500 cells 

per image) and analyzed via two-sample t test (* p<0.05, *** p<0.001; n=3 

animals/treatment group, 5 replicates/animal). For B. and C, all values are displayed as 

mean ± SEM of samples. 
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3.8 Immunohistochemical analysis of UVB-induced 

BCC tumors in Ptch+/LacZ/Hr-/- mice  

To elucidate the epidermal compartment and verify the cancer-initiating cell of BCC 

tumorigenesis in our mouse model, I examined the histopathology of paraffin-embedded 

macroscopic tumor sections from the two control groups as described previously58,62. BCC 

tumors driven by Ptch1 loss are characterized by a radiating, branching organization 

reminiscent of hair follicle differentiation in this model. These micronodular tumors 

displayed scarce stroma and sparse blood vessels, with cells organized into irregularly 

shaped nests. In certain portions of the tumor, elongated or spindle-like cells with a 

minimal degree of nuclear palisading were observed (Figure 17.A, inset), while a 

prominent cleavage was present between surrounding connective tissue and tumor stroma 

(Figure 17. A). Interestingly, BCCs originating from the follicles often display 

inappropriate myoepithelial differentiation, as seen in sporadic human BCC and 

susceptible mouse models62,205,206. Since smooth muscle actin (SMA) is a well-established 

marker for myoepithelial differentiation, I therefore conducted immunohistochemistry to 

examine SMA expression in macroscopic BCC tumors. Strong intracytoplasmic SMA 

immunoreactivity is detected in BCCs and hair follicles of UVB-exposed tumor-adjacent 

skin, but was absent in the stratum basale and suprabasal layers of Ptch+/LacZ/Hr-/- mice 

(Figure 17.B,C). Interestingly, a direct association between these keratinocyte tumors and 

hair follicles was often observed. Rare initial phases of this keratinocyte tumor originating 

from the bulge region (Figure 17.D) and ORS (Figure 17. D, inset) of hair follicles were 

detected in irradiated Ptch+/LacZ mice, with strong K15 immunoreactivity in peripheral cells. 

Similarly, K15 expression was also detected in the peripheral cells of tumor nests in 

macroscopic BCCs identified as BCC by pathologists (Figure 17.E). Together, these data 

suggest that the UVB-induced BCCs in Ptch+/LacZ/Hr-/- mice are associated with the hair 

follicles, and likely originate from the K15+ adult stem cells that are present in the bulge 

and ORS regions.  
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Figure 17: Immunohistochemistry analyses of UVB-induced BCC tumors. A. UVB-

induced BCCs in Ptch+/LacZ/Hr-/- mice are characterized by irregularly shaped nests 

organized in a radiating pattern, with scarce stroma and blood vessels. Insets and 

arrowheads show elongated cells in small, irregular nests with minimal nuclear palisading. 

B. Expression pattern of smooth muscle actin (SMA) in macroscopic BCC tumors. SMA 

was present in both the tumor stroma and the cytoplasm of tumor cells. C. Strong SMA 

expression detected in the tumor-adjacent hair follicle of UVB-exposed vehicle control. 

No SMA immunoreactivity was observed in stratum basale or suprabasal epidermis. D. 

BCC tumors in Ptch+/LacZ/Hr-/- mice are directly associated with the hair follicles. Rare 

initial stages of BCC exhibit atypical outgrowth arising from the approximate region of the 

bulge (white arrowhead) or outer root layer sheath (inset) that are focally-positive for K15 

expression (red). E. K15 expression (red) in macroscopic BCCs. Similar to K15 expression 

in the atypical outgrowth originating from hair follicles, peripheral cells in macroscopic 

BCC are strongly positive for K15 immunoreactivity.  
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Chapter 4  

4 Discussion  

4.1 HA-PE phenocopies the cancer-resistant naked 

mole-rat to prevent carcinogenesis in susceptible mice 

Once thought to be an inert component of the ECM, HA is now recognized as a dynamic 

molecule that facilitates extracellular protein-protein interaction and intracellular 

signaling106,131,146. The loss of native HA in epidermis is characteristic in aging, 

inflammation, chronic UV exposure, and tumorigenesis106,107,118. Previous studies report 

HMW-HA accumulation elicits suppressive effects on murine astrocytoma and colon 

carcinoma xenograft tumor growth 169,170. Further, HMW-HA arrests breast cancer cell 

growth in vitro and spheroid growth, marked by downregulated cyclin D1 and PCNA 

expression95,176 To our knowledge, this is the first study to examine the effects of epidermal 

HMW-HA enhancement on keratinocyte carcinoma initiation. I demonstrated hyaluronan-

phosphatidylethanolamine polymers (HA-PE) significantly increase large HA polymer 

content in the epidermis (Figure 3). HA-PE application suppresses hyaluronidase activity 

and HYAL2 expression (Figure 4), an extracellular hyaluronidase that degrades native HA, 

predicting the accumulated epidermal HA is the high molecular-weight species. Moreover, 

the topical application of HA-PE prevented UVB-induced histologically-detectable BCC 

tumor initiation as detected by histology and inhibition of and significantly blocked Ptch1 

promoter expression in susceptible mice (Figure 5).  

Previous in vivo and cell studies demonstrate sonic hedgehog hyperactivation drives BCC 

tumorigenesis28,29,33,207, and its inhibition leads to reduced proliferative capacity and tumor 

growth208,209. Specifically, animal studies suggest sonic hedgehog signaling driven by loss-

of-function mutation in Ptch1 directly causes BCC originating from the bulge58,60,62, but an 

IFE with hyperactive sonic hedgehog signaling may also constitutive a permissive 

microenvironment for BCC initiation58,59,61. Moreover, HA is a recognized agent in 

mediating maintenance and support of stem-cell niches, including the bulge within hair 
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follicles210. In association with HA accumulation, we show that β-gal staining measuring 

Ptch1 promoter expression is significantly reduced in the IFE and hair follicles (Figure 5), 

indicating suppression of sonic hedgehog signaling in UVB-exposed Ptch1+/- mice. The 

expression and nuclear translocation of the transcriptional factor GLI1, another well-

established marker for sonic hedgehog activation, is similarly suppressed by HA-PE in IFE 

and follicles (Figure 6.A,B). Decrease in  sonic hedgehog signaling is further verified by 

assessing target gene CNND1 (Figure 7) and BCL2 (Figure 14) expression, which were 

significantly diminished in susceptible mice after HA-PE application. Interestingly, HA-

PE reduced the activating ligand SHH expression (Figure 6.C), suggesting a mechanism of 

suppressing the hedgehog pathway. Taken together, our data predict HA-PE prevents 

UVB-induced BCC by inhibiting aberrant sonic hedgehog signaling in two epidermal 

compartments: the hair follicle bulge, and the IFE. HA-PE targets SCs in the bulge via 

restricting sonic hedgehog signaling to a level similarly observed in non-irradiated controls, 

and limits the tumorigenic potential of stem cells in stratum basale via preventing sonic 

hedgehog signaling in IFE.  

This prevention of tumorigenicity was associated with restricted cyclin D1 and Ki67 

expression in the hair follicles of susceptible mice (Figure 7, 8). CCND1, a target gene of 

sonic hedgehog signaling and mediator of G1-S progression, was significantly restricted 

but not extinguished in the hair follicles (Figure 7), thus further verifying decreased sonic 

hedgehog signaling following HA-PE application. Similarly, Ki67 expression was also 

significantly reduced by HA-PE application in the bulge region of hair follicles, where the 

adult stem cells reside (Figure 8). Together, these data predict HA-PE promotes mitotic 

quiescence in UVB-irradiated hair follicles to limit their oncogenic potential.  

In naked mole-rats, large HA polymers are also protected from degradation by reduced 

extracellular hyaluronidase activities94. HMW-HA accumulation confers cancer resistance 

in this species via promoting contact inhibition hypersensitivity through inducing cyclin-

dependent kinase inhibitor p16INK4A/B expression94, 95, thereby promoting quiescence in 

vitro as reflected by the decreased PCNA expression95. The effects of HA-PE reported here 

therefore phenocopy the properties of HMW-HA in the long-lived rodent naked-mole rat 

by increasing HA polymer accumulation, downregulating hyaluronidase activity, inducing 
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relative mitotic quiescence, and exerting an anti-tumorigenic effect. However, the protein 

isoform (p16INK4A/B) responsible for ECI in naked mole-rats is not expressed in mice93,94. 

Thus, further examinations of mammalian contact inhibition pathways (i,e: Hippo/YAP) 

may shed new lights on the involvement of contact inhibition in the prevention of 

keratinocyte carcinogenesis. Moreover, HA-PE elicited apoptotic responses in the known 

cancer-initiating subpopulation of adult stem cells in this susceptible model, whereas 

HMW-HA produced by H. glaber was reported to induce apoptosis in breast cancer cells 

non-specifically95. To my knowledge, the effects of H. glaber HMW-HA on cancer stem 

cells have not been investigated. Here, the promotion of mitotic quiescence and apoptosis 

appear to be linked to an effect of HA-PE on sonic hedgehog signaling, as cyclin D1 and 

BCL2 are target genes of this oncogenic signaling pathway. 

To begin to identify the mechanisms behind HA-PE block in hedgehog signaling and BCC 

initiation, I examined the expression of the major HA receptors in keratinocyte. CD44 is 

the major keratinocyte HA receptor133,135 and is a promising target in facilitating the tumor 

suppressive effect of HA-PE because CD44 mediates the cancer resistance of HMW-HA 

in naked mole-rats 94,95. Moreover, CD44 is essential for several HMW-HA-mediated 

suppression of proliferation126,138, tumor growth126,169,170, and invasion125,157. Keratinocytes 

in homeostatic epidermis primarily express CD44v3-v10, with v3 being the most 

prominent isoform135. Here, we report that HA-PE increased CD44 protein expression in 

the epidermis and hair follicles (Figure 9) and maintained CD44v3 isoform expression, 

which is characteristic of homeostatic keratinocytes (Figure 10.A) that was lost in UVB 

exposed controls. In addition, immunohistochemistry demonstrated that the interfollicular 

epidermis of HA-PE treated mice retained a distinct stratum basale and organized 

suprabasal layers following UVB exposure. In contrast, this tissue architecture indicative 

of a homeostatic epidermis was lost in irradiated controls, as the stratum basale cannot be 

distinguished from suprabasal layers in the epidermis (Figure 7.A). Taken together, the 

findings here predict epidermal HA maintains homeostasis in the interfollicular epidermis 

via promoting CD44v3 isoform expression and maintaining the appropriate epidermal 

architecture. Since CD44 is the primary receptor that is responsible for the HA-mediated 

cancer resistance in naked mole-rats93,94, it is possible that HA-PE exerts its anti-

tumorigenic effects through interaction with CD44 in the epidermis and hair follicles.  
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4.2 HA-PE mediated suppression is not orchestrated 

through canonical NF-κB signaling  

A direct effect of CD44 on sonic hedgehog pathway activity has not been previously 

reported to my knowledge.  However,  HMW-HA/CD44 signaling is a well-established 

inhibitor of canonical NFκB signaling, a pro-inflammatory pathway that promotes SHH 

expression and activation of sonic hedgehog signaling174,175. Previous studies report 

canonical NFκB signaling, activated by the p65/p50 heterodimer, is essential for skin 

carcinogenesis in mice75,186. For example, the p65 inhibitor SSZ significantly reduces the 

nuclear translocation of canonical NFκB and UVB-induced BCC tumor load in 

Ptch+/LacZ/Hr-/- mice, although SSZ does not completely prevent tumor initiation in these 

susceptible mice186. Unexpectedly, HA-PE did not alter p65 nuclear translocation (Figure 

11), possibly due to altered receptor clustering at the membrane. Since canonical NFκB 

signaling requires the dimerization and translocation of p65/p50 subunits, the lack of 

difference in p65 translocation suggests that canonical NFκB signaling was not 

significantly affected by HA-PE treatment. In contrast, p50 nuclear translocation in 

susceptible mice was significantly prevented by HA-PE application relative to UVB-

exposed vehicle control (Figure 11), predicting suppression of the non-canonical NFκB 

pathway. Nuclear p50 homodimer accumulation and constitutive kappaB-binding 

mediated by non-canonical signaling are characteristic of skin neoplasms in mice 211,212. In 

Ptch+/LacZ/Hr-/- mice, non-canonical NFκB signaling is reported to accelerate tumor growth 

by creating a pro-inflammatory microenvironment, and augment BCC pathogenesis 

through upregulating the activating ligand SHH expression to sustain sonic hedgehog 

signaling  212. It is well-established that the p50 subunit does not contain a trans-activating 

domain. Therefore, an additional trans-activator, such as BCL3, is required to for p50 

homodimer to acquire transcriptional activity212,213. BCL3 overexpression is associated 

with stabilization of the p50 homodimer in squamous cell carcinoma211, and enhanced 

BCL3 activity is associated pathogenesis of various neoplasms214,215. Moreover, BCL3 

knockdown significantly reduces PTCH1, GLI1 and GLI2 expression in murine BCC cells, 

thus predicting crosstalk between the two pathways212. In this context, HA-PE may 

suppress sonic hedgehog signaling by preventing non-canonical NFκB-induced SHH 
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expression212. Future experiments should be conducted to investigate the role of HMW-

HA, CD44 and possibly other HA receptors (i.e: Toll-like receptors) in modulating the 

non-canonical NFκB pathway in the context of BCC tumorigenesis, and further examine 

the relationship between p50 homodimers and sonic hedgehog signaling.  

4.3 HA-PE promotes apoptosis of DNA-damaged 

K15+ cancer-initiating stem cells in hair follicles 

UVB is a well-documented environmental carcinogen that threatens genome integrity via 

directly inflicting structural alterations in DNA, such as promoting dimer formation also 

add ROS damage, which is not a direct effect. Mice and humans employ various strategies 

to ensure genome integrity against UVB insults, such as the production of UV-absorbing 

pigments, expression of anti-oxidants, and repair mechanisms including base and 

nucleotide excision repair 67,68,76. However, these mechanisms do not completely protect 

DNA from UV, and damage accumulation is regarded as the primary skin carcinogen 69,71. 

Previous studies have characterized HMW-HA as a genoprotective agent by its ability to 

scavenge epidermal ROS. For example, HMW-HA reduced γ-H2AX foci formation, 

intracellular ROS levels, and damage-induced apoptosis of human corneal and alveolar 

epithelial cells 114,171,172. It is therefore surprising that HA-PE-mediated suppression of 

BCC is not associated with reduced DNA damage in UVB-exposed mice (Figure 12, 13). 

No significant differences were observed in γ-H2AX foci formation, nuclear DNA-

associated ROS adduct 8-oxo-DG, and UVB-induced CPD in UVB controls and HA-PE 

treated epidermis and hair follicles. As a preliminary assessment of DSB repair in the 

epidermis, I performed a vertical lineage tracing of proliferating γ-H2AX+ progenitor cells 

in the stratum basale and associated γ-H2AX+ daughter cells (Figure 12. C). The number 

of γ-H2AX-positive daughter cells that originated from the same basal stem cell served as 

a reflection of DSB escaping DNA repair in the epidermis. The number of γ-H2AX+ 

progenies in the suprabasal layers was not significantly different between experimental 

groups, suggesting the efficiency of DSB repair was not significantly altered by HA-PE 

application in the epidermis. Although my findings do not support previous reports of the 

genoprotective function of HA, they are consistent with previous studies showing that 
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UVB-exposed eyelid keratinocytes sustain a high level of DNA damage but do not undergo 

neoplastic transformation79–83. Deep next-generation sequencing shows a prevalent and 

high mutational load in oncogenic driver mutations of phenotypically-normal skin without 

detectable tumor development, suggesting that an innate barrier exist that restricts the 

carcinogenic potential of driver mutations79,83,86. 

Although the precise downstream mechanism remains unclear, apoptosis is a well-

established mechanism of preventing carcinogenesis. Apoptosis is triggered when DNA 

damage accumulation overwhelms the repair machinery, or by blocking signaling of 

pathways that normal or tumor cells rely upon for proliferation, survival, and renewal. In 

UVB-exposed Ptch+/LacZ/Hr-/- mice, HA-PE restricts proliferation (as detected by 

decreased Ki67 expression, Figure 8) and promoted apoptosis cell subsets in the ORS and 

bulge of hair follicles, which were uniquely observed in HA-PE treated groups (Figure 15). 

In human and mouse, the ORS and bulge regions contain slow-cycling K15-expressing 

stem cells, which can migrate into the stratum basale to transiently participate in wound 

healing upon stimulated by sonic hedgehog signaling. In Ptch+/- mice, K15+ cells and their 

progenies have the potential to give rise to BCC after chronic UVB exposure. Here, double-

labelling immunofluorescence demonstrated these apoptotic subsets in the hair follicles 

were K15-positive (Figure 16). Intriguingly, apoptotic K15+ cells were not observed in the 

stratum basale following HA-PE treatment (Figure 16. A), possibly due to the lack of 

migration into the interfollicular epidermis (Supplemental Figure 2.B). HA-PE suppression 

of sonic hedgehog signal in the microenvironment may prevent K15+ stem cell migration 

into the IFE, since paracrine sonic hedgehog signal from the dermis and innervated neurons 

are required to initiate this process. Moreover, approximately 40% of total K15+ adult stem 

cells were apoptotic after 26 weeks of irradiation and HA-PE application. Consistent with 

this finding, the number of K15+ cells in UVB-irradiated HA-PE-treated mice was similar 

to controls at 4 weeks, but reduced significantly after 26 weeks of irradiation (Figure 16, 

C). This finding indicates that the adult stem cells were gradually lost due to cell death over 

26 weeks. This apoptosis was associated with suppression of the pro-survival BCL2 

expression in the epidermis and hair follicles (Figure 14). Evasion of apoptosis and 

sustained BCL2 expression are a hallmark of BCC carcinogenesis199,201,216, all of which 

were absent in HA-PE treated group.  
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Previous studies report that the cell of origin in BCC pathogenesis depends on the 

component of sonic hedgehog signaling that is affected. For example, mutational 

inactivation of PTCH1 gives rise to BCCs originating from the K15+ BuSCs in the hair 

follicles. In contrast, constitutive activation of SMO or GLI2 produce BCCs arising from 

the K14+ adult stem cells in the interfollicular epidermis. Interestingly, BCCs arising from 

different epidermal compartments exhibit unique histopathological characteristics, which 

can be used to provide clues of the cell of origin when studying these keratinocyte tumors. 

Therefore, to investigate the epidermal compartment and the identity of cancer-initiating 

cells, I examined the histopathological characteristics of macroscopic BCC tumors as 

described previously58,62. The BCC tumors in Ptch+/LacZ/Hr-/- mice displayed irregularly 

shaped nests organized in a radiating, branching pattern resembling follicular 

differentiation (Figure 17.A), consistent with previous reports of micronodular BCC 

arising from hair follicles56,58,59. Further, smooth muscle actin (SMA) expression in hair 

follicle cells is suggestive of inappropriate myoepithelial differentiation, a prominent 

feature in sporadic BCC patients and susceptible mice driven by sonic hedgehog activation 

under the K15 promoter58. Interestingly, strong intracytoplasmic SMA reactivity was 

observed in BCC tumors (Figure 17.B) and the tumor-adjacent hair follicles (Figure 17. C), 

but was absent from the tumor-adjacent interfollicular epidermis, thus predicting a 

connection between BCCs in Ptch+/LacZ/Hr-/- mice and hair follicles. Further, rare initial 

phases of neoplasm development demonstrated a direct association with the hair follicles 

(Figure 17.D). Strong K15 expression was detected in peripheral cells of developed tumor 

nests (Figure 17.E) and at early stages of atypical outgrowth from the bulge (Figure 17.C), 

thus predictive of BCCs arising from the hair follicles. This is supported by previous 

studies reporting prominent K15 immunoreactivity in human nodular BCCs, a subtype 

commonly associated with the bulge204,217. Taken together, the findings here predict the 

macroscopic BCC tumors likely arise from the K15-expressing stem cells in hair follicles 

in Ptch+/LacZ/Hr-/- mice.  

Since cancer-initiating cells rely on sonic hedgehog signaling to drive BCC tumorigenesis, 

the loss of the oncogenic driver triggers apoptosis in pre-malignant cells. Previous in vivo 

and cell culture studies show the depletion of sonic hedgehog by an inhibitor (cyclopamine) 

leads to adult stem cell quiescence and apoptosis46,47. In this study, sonic hedgehog 
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signaling in the bulge and ORS was reduced by HA-PE application, which coincided with 

enhanced apoptosis in K15+ adult stem cells that rely on sonic hedgehog hyperactivation 

for tumorigenesis. Further, the data in this study demonstrated the activating ligand mRNA 

expression, SHH, was inhibited by HA-PE application (Figure 6.C), suggesting signaling 

inhibition occurs at the PTCH receptor level. In this context, CD44 is a promising candidate 

of signal transduction mediated by HA binding. CD44 is a well-established HA receptor 

that regulates downstream pathways, such as Wnt/beta-catenin218,219, that modulate SHH 

transcription220–222. Further, signaling downstream of CD44 is dependent on the identity of 

CD44 variant132,134,223, thus adding an additional layer of complexity. Therefore, future 

experiments should be conducted to elucidate the mechanism underlying HMW-HA-

mediated inhibition of sonic hedgehog activation and the role of CD44.  

4.4 Future directions 

Causation of HA-PE application and sonic hedgehog suppression should be established in 

future experiments. K15+ cells isolated from Ptch+/- mice will be irradiated and treated with 

HA-PE. It is expected that HA-PE will reduce sonic hedgehog activation, restrict 

proliferation, and promote apoptosis. Since HA-PE reduced SHH transcription, an 

activating ligand that is not a hedgehog target gene, we speculate that pathway inhibition 

occurs at the Shh/PTCH1 level. Therefore, the addition of a downstream activator, such as 

an SMO agonist, is expected to override the effects of HA-PE in K15+ cells. Further, we 

speculate that this HA suppression of BCC initiation is orchestrated by CD44 in the hair 

follicles. To that end, CD44 standard- and variant-specific antibodies that interfere with 

HA-binding should be added to the Ptch1+/- K15+ cells as additional controls, and examined 

to assess whether HA-mediated suppression is conducted through CD44 binding. It is 

expected that interference with CD44/HA interaction will abolish the suppressive effect of 

HA-PE on sonic hedgehog signaling and proliferation. Since dysregulated proliferation, 

survival and inappropriate differentiation of damage-sustaining cells in hair follicles were 

detected in this study, mutational analyses should also be conducted on skin biopsies to 

examine alterations in additional driver pathways that regulate proliferation, stem cell 

survival and differentiation, such as WNT/β-catenin and Notch signaling, in the skin. 

Moreover, mutational analyses will provide data on the identity of the somatic mutations 
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in UVB-exposed susceptible mice, thus allowing us to examine whether HA-PE modifies 

the microenvironment to select for mutations to prevent carcinogenesis. Lastly, RNAseq 

analyses should be performed to provide an unbiased assessment of transcriptome and 

pathway alterations induced by HA-PE application.  

  



www.manaraa.com

70 

 

5 Conclusions  

Taken together, the data presented here suggest a novel mechanism of HA-mediated 

resistance against tumor initiation in the context of BCC carcinogenesis. The accumulation 

of HMW-HA in epidermis did not exert its protective functions through shielding 

epidermal cells from DNA damage. Instead, HA-PE inhibited the tumorigenic potential of 

mutations via restricting proliferation and promoting apoptosis. Specifically, HA-PE 

prevents oncogenic sonic hedgehog signaling in the hair follicles, where the K15+ cancer-

initiating cells reside in the Ptch+/LacZ/Hr-/- model. This chronic loss of oncogenic driver 

signaling limited the proliferative capacity of K15+ BuSCs, and resulted in a gradual 

depletion of cancer-initiating cells via apoptosis. However, this reduction in proliferation 

and enhanced apoptosis did not interfere with homeostasis as indicated by CD44v3 

expression. HA-PE also contributed to establishing proper tissue architecture by 

maintaining a distinctive stratum basale separated from suprabasal layers. Overall, the 

findings here implicate HA-PE as a promising BCC prophylactic that can reduce BCC-

associated healthcare costs and improve quality of life in patients.  Moreover, aberrant 

hedgehog signaling is implicated in cancer stem cell maintenance224,225,226 that is required 

for tumor initiation in the breast, prostate and colon cancer38,227,228. Therefore, a 

mechanistic understanding of HA-PE mediated resistance will have broad applications for 

developing preventative therapies. HA-PE may be re-purposed to reduce the tumorigenic 

potential of at-risk patients, and permit the development of preventative medicines against 

breast, prostate, and colon cancer 38,226,227,228. 
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Appendix A: Supplemental materials  

 

Supplemental Figure 1. HA-PE on CD44 isoform expression. mRNA expression of 

CD44s, v4, v8, v10 were assessed through RT-PCR using primers flanking the variable 

region in CD44, and compared with the housekeeping gene GAPDH. Isoform expression 

of CD44v4, v8, v10 were unchanged by HA-PE application in susceptible mice after 4 

weeks of UVB irradiation. Experiments described in A. and B. were repeated three times.  
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Supplemental Figure 2. K15-expressing bulge stem cells are not lost in disrupted hair 

follicles in Ptch+/LacZ/Hr-/- mice after 4 weeks of irradiation. A. K15 expression (red) in 

hair follicles, and; B. in stratum basale of control and treatment groups. All slides 

counterstained with DAPI (blue). In normal follicles, the outer root sheath extends past the 

bulge region into the hair bulb, and the bulge region is located above the sebaceous gland. 

The hair bulb disintegrates after the first hair cycle in Hr-/- mice, and the bulge region is 

often located at the bottom of the disrupted hair follicle. However, these K15+ stem cells 

are not lost despite the disrupted morphology. Further, K15+ stem cells can migrate into 

stratum basale to participate in interfollicular epidermis renewal. However, no K15+ cells 

in stratum basale were observed in HA-PE treated group.  Histology sections of wildtype 

epidermis are adapted from Blue Histology, University of Western Australia 

(http://www.lab.anhb.uwa.edu.au/mb140/).  Arrowheads indicate the outer root sheath 

(ORS) and bulge region in disrupted and wildtype hair follicles.  
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